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ABSTRACT
INTERSECTIONS OF ASTROPHYSICS, COSMOLOGY AND PARTICLE PHYSICS

by

Luiz Henrique Moraes da Silva

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Professor Anchordoqui and Professor Raicu

With the success of the Large Hadron Collider (LHC) at CERN, a new era of discovery

has just begun. The SU(3)C×SU(2)L×U(1)Y Standard Model (SM) of electroweak and

strong interactions has once again endured intensive scrutiny. Most spectacularly, the

recent discovery of a particle which seems to be the SM Higgs has possibly plugged the

final remaining experimental hole in the SM, cementing the theory further. Adding more

to the story, the IceCube Collaboration recently reported the discovery of extraterrestrial

neutrinos, heralding a new era in astroparticle physics. The collaboration was able to

isolate 36 events in 3 years of data, with energies between 30 TeV . Eν . 2 PeV. These

events are consistent with an isotropic distribution in the sky, and a purely atmospheric

explanation of the data can be excluded at 5.7σ.

However, problems still exist. Cosmological observations concerning dark matter and

the expansion rate of the Universe have shown us our picture of the basic constituents of

the Universe and the interactions among them are not fully understood. In addition, the

determination of the origin of high energy neutrinos has proven to be a quite formidable

problem, with many possible candidates for sources. Motivated by these problems, we

study and impose constraints on a dark matter model, and consider the idea of starburts

and Galatic microquasars as possible astrophysical sources for the high energy neutrino

events observed at IceCube. In addition, dark matter decay is considered as a way to

explain high-energy neutrino events and reconcile the tension between measurements of

the Hubble constant by different observation methods.
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1 Introduction

Recently, the IceCube Collaboration reported the discovery of extraterrestrial neutri-

nos [276]. By establishing a strict veto protocol, the collaboration was able to isolate 36

events in 3 years of data, with energies between 30 TeV . Eν . 2 PeV. These events

follow the expected spectral shape (∝ E−2
ν ) of a Fermi engine, and are consistent with

an isotropic distribution in the sky. A purely atmospheric explanation of the data can be

excluded at 5.7σ.

At Eres
ν ' 6.3 PeV, one expects to observe a dramatic increase in the event rate

for ν̄e in ice due to the “Glashow resonance” in which ν̄ee
− → W− → shower greatly

increases the interaction cross section [277]. The hypothesis of an unbroken power law

∝ E−αν then requires α & 2.45 to be consistent with data at 1σ [280]. More recently, the

IceCube search technique was refined to extend the neutrino sensitivity to lower energies

Eν & 10 TeV. A fit to the resulting data, assuming a single unbroken power law and

equal neutrino fluxes of all flavors, finds a softer spectrum

Φper flavor
IceCube (Eν) = 2.06+0.4

−0.3 × 10−18

(
Eν

105 GeV

)−2.46±0.12

× GeV−1 cm−2 sr−1 s−1 (1)

and already mildly excludes the benchmark spectral index α = 2. In this work, we will

consider different candidates for the sources, from Galactic and extragalactic origin, and

as we will see soon, this will not be enough.

Another piece of the puzzle comes when we consider the Standard Model of Particle

Physics. First, some theoretical inconsistencies seem to exist. For example, the fact
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that neutrinos oscillate and are massive as it was mentioned before is not completely

understood yet. On the other hand, the success of the Large Hadron Collider (LHC) at

CERN, seems to point on the other direction. The Standard Model (SM) of electroweak

and strong interactions has once again endured intensive scrutiny, with a data set corre-

sponding to an integrated luminosity of ≈ 20fb−1 of pp collisions at
√
s =8 TeV. Most

spectacularly, the recent discovery [105, 106] of a particle which seems to be the SM Higgs

has possibly plugged the final remaining experimental hole in the SM, cementing the the-

ory further. The LHC8 data have not yet turned up any evidence of physics beyond the

SM [107]. Despite the resilience of the SM, it seems clear that there is more to the story,

as in the moment this text is written, LHC is going through a new run, and apparently

interesting (and unexpected!) physics seems may emerge in the near future [25], [26].

From the cosmological and astrophysical point of view, we have evidence that new

physics, beyond the SM, might be necessary. The existence of dark matter (DM) has

been solidified by multiple astrophysical observations [172]. Weakly interacting mas-

sive particles (WIMPs) are among the best motivated candidates [109]. If stable par-

ticles with mass and annihilation cross section set by the weak scale exist, they would

be produced and annihilate in thermal equilibrium in the early Universe. As the Uni-

verse expands, these particles fall out of equilibrium and their number density is frozen

in. A typical weak scale interaction rate yields a thermally averaged WIMP annihila-

tion cross section, 〈σvM〉 ∼ 10−9GeV−2, which naturally produces a WIMP relic den-

sity h2ΩWIMP ∼ 10−10GeV−2/〈σvM〉 ([166] - [170] ) consistent with the measured DM

abundance h2ΩDM = 0.111(6) [171], thus making WIMPs promising candidates of DM

(throughout this work we adopt the usual convention of writing the Hubble constant at

the present day as 100hkms−1Mpc−1. For t = today, the various energy densities are

expressed in units of the critical density ρc; e.g., the DM density ΩDM ≡ ρDM/ρc.

Since WIMPs are subject to the weak interaction, it is possible to search for them via

direct detection experiments, γ-ray observatories, neutrino telescopes, and particle collid-

ers. The first direct detection experiment to claim evidence for DM was DAMA/LIBRA

[110], which has recorded an annual modulation in nuclear recoil event rate at the 8.9σ
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level [111]. This modulation can be interpreted as a consequence of the change in the

relative motion of the detector through the sea of DM as the Earth rotates around the

Sun [112, 113]. Other direct detection experiments have provided supporting evidence

for WIMP interactions, including CRESST [114], CoGeNT [115, 116, 117], and most

recently the CDMS II [118] experiment. Interestingly, all of these observations favor a

light WIMP, with mass ∼ 10 GeV and an interaction with protons via spin-independent

elastic scattering with a cross section ∼ 1041cm2. In contrast, the XENON-10 [119] and

XENON-100 [120] DM experiments have reported limits which exclude the mass and

cross-section regime favored by CoGeNT, CRESSTand CDMS II.

A variety of models were employed to reconcile hints of the signals mentioned above

with the exclusion from XENON-10 and XENON-100. However, tension has increased

even further after recent CDMS Low Ionization Threshold Experiment (CDMSlite) [121]

and LUX [194] results. At this point only the xenophobic isospin violating dark matter

[123, 124, 125, 126, 127], with a neutron to proton coupling ratio of -0.7 allows any overlap

with the 68% favored contour of CDMS II [128, 129, 130]. Favored regions of all other

experiments remain excluded.

Another, seemingly different, but perhaps closely related subject is the emerging ten-

sion between direct astronomical measurements at low redshift and cosmological parame-

ters deduced from temperature fluctuations in the cosmic microwave background (CMB).

As we already mentioned on the Cosmology chapter, the TT, TE, EE spectra recorded by

the Planck spacecraft when combined with polarization maps (lowP) describe the stan-

dard spatially-flat 6-parameter ΛCDM model {Ωbh
2, ΩCDMh

2, Θs, τ, ns, As} with high

precision: (i) baryon density, Ωbh
2 = 0.02225 ± 0.00016; (ii) CDM density, ΩCDMh

2 =

0.1198±0.0015; (iii) angular size of the sound horizon at recombination, Θs = (1.04077±

0.00032)× 10−2; (iv) Thomson scattering optical depth due to reionization, τ = 0.079±

0.017; (v) scalar spectral index, ns = 0.9645 ± 0.0049; (vi) power spectrum amplitude

of adiabatic scalar perturbations, ln(1010As) = 3.094 ± 0.034 [231]. Planck data also

constrain the Hubble constant h = 0.6727 ± 0.0066, the dark energy density ΩΛ =

0.6844 ± 0.0091, the amplitude of initial density perturbations σ8 = 0.831 ± 0.013, and
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the mass density parameter Ωm = 0.3156 ± 0.0091.1 Unexpectedly, the H0 inference

from Planck observations deviates by more than 2.5σ from the previous interpretation

of the Hubble Space Telescope (HST) data (based on over 600 cepheids in host galaxies

and 8 samples of SNe Ia) which leads to h = 0.738 ± 0.024, including both statistical

and systematic uncertainties [93]. A separate study by the Carnegie Hubble program

using mid-infrared calibration of the cepheid distance scale based on data from NASA’s

Spitzer Space Telescope yields h = 0.743 ± 0.021 [94]. Besides, the interpretation of

gravitational lensing time delay measurements of the system RXJ1131-1231 points to

h = 0.787+0.043
−0.045 [95].

In this dissertation, we outline will be as follows: we will present a brief overview of

theoretical topics from chapters 1 to 5, which will be based on standard textbooks on the

Standard Model, Quantum Field Theory and Cosmology, with focus on the electroweak

interaction. On Chapter 6, we will present the first research results, concerning a model

for dark matter. On chapters 7 and 8, we will talk in more detail about high energy neu-

trinos produced in astrophysical sources and their detection on the IceCube experiment.

We finish the text on the later chapters discussing research results concerning the high

energy neutrino flux from astrophysical sources and its possible connection to Cosmology

through dark matter decay, which could be a way of reconciling the tension between the

Hubble parameter measurements.

1Throughout we adopt the usual convention of writing the Hubble constant at the present day as
H0 = 100 h km s−1 Mpc−1.
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1.1 Natural Units

In particle physics and cosmology, it is common to adopt

~ = c = kB = 1, (2)

where the reduced Planck constant, the speed of light and the Boltzmann constant are

equal to 1. Due to the fact that the speed of light equals 1, we use electronvolts (eV) to

treat mass and energy. Distances become expressed as eV−1,

1 m = 1
m

~c
≈ 510 eV−1 (3)

We will also adopt Einstein’s summation convention for indices, unless stated other-

wise. Quantities with an arrow, such as ~v are vectors with spatial components only, and

the Minkowski metric has signatute (+ - - -).
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2 U(1)Y × SU(2)L × SU(3)C

2.1 Historical Introduction

The Standard Model is a physical theory that describes the Electromagnetic, Weak

and Strong forces and the particles we know. In 1961, Sheldon Glashow found a way

of combining the Electromagnetic and the Weak interactions [47]; a few years later, in

1967, Steven Weinberg and Abdus Salam combined Glashow’s electroweak theory with

the Higgs mechanism [48]. Weinberg, Glashow and Salam shared the Nobel Prize in

Physics in 1979 for this theory, which was confirmed at CERN in 1973 via the detection

of the Z boson exchange in neutral weak currents [46]. The Strong force was shaped

into its modern form around 1974, with the experimental confirmation of the fact that

hadrons are composed by quarks.

Quantum field theory differs from non-relativistic quantum mechanics in many ways.

QFT is an attemp of formulating a covariant, fully relativistic theory of the fundamental

interactions, something that traditional quantum mechanics does not attempt to do. In

order to do so, time and space must have equal status on the theory; thus, we have two

options: we can promote position and time to the status of operators, or we can demote

all of them to the status of parameters.

It turns out that the second option (time and space as parameters) is much more

viable. The real problem now is the following: we want to impose commutation relations

(in order to do quantization), but we no longer have the position and momentum operators

to do so. The answer is: the particles are the Hermitian operators now, and a particle

operator will be parametrized by space an time coordinates. An electron, for example,

is not described by a wavefunction in which operators act anymore; instead, the electron
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is the operator. By acting on the vacuum, the “electron operator” creates an excited

state, which we interpret physically as a single physical particle. Thus, particles are now

excitations of the vacuum. Note that there is an analogy between this idea and ladder

operators in harmonic oscillators; in fact, this idea is the essence of what is usually

referred to as “Second Quantization”.

After defining what a particle is, the next step is to treat the interactions and that’s

where gauge theories (or Yang Mills theories) become useful. In this framework, sym-

metries are interactions, and group theory becomes essential. The idea is to associate

an interaction (strong force, weak force or electromagnetism) to a certain Lie group in a

certain representation. The particles that couple to the interaction are the eigenvectors

of the Cartan generators, the eigenvalues will be the physical charges, and there are as

many charges as the dimension of the group under the fundamental representation. The

Cartan generators will be the force carrying particles that transfer energy and momentum

but don’t affect the charge of the particles (such as the photon and the Z boson). The

non-Cartan generators are associated with raising and lowering operators, therefore being

able to change eigenvectors and, consequently, eigenvalues. This means that non-Cartan

generators are associated with force carriers that transfer energy, momentum and affect

the charge (gluons and W boson).

2.2 Canonical Quantization

2.2.1 The Harmonic Oscillator

In this section, we will recall some results from the quantum harmonic oscillator.

Ĥ =
P̂ 2

2m
+

1

2
mω2X̂2, (4)

and we define the usual ladder operators (whch are not Hermitian)

a =

√
mω

2~

(
X̂ +

i

mω
P̂

)
, (5)
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a† =

√
mω

2~

(
X̂ − i

mω
P̂

)
. (6)

They act on the energy eigenstates,

H |n〉 = En |n〉 , En = ~ω
(
n+

1

2

)
, (7)

giving

a† |n〉 =
√
n+ 1 |n+ 1〉 , (8)

a |n〉 =
√
n |n− 1〉 . (9)

Recall that

a |0〉 = 0, (10)

and we can also define a number operator,

N̂ = a†a, N |n〉 = n |n〉 ⇒ Ĥ =

(
N +

1

2

)
~ω. (11)

The ladder operator method is extremely useful in quantum mechanics. In our con-

text, where particles are treated as excitations from a field, the idea of creation and

anihillation operators seems to fit perfectly; thus, this approach will become the key

stone in which we will try to build our theory upon.

2.2.2 Canonical quantization of scalar fields

This is the point when we begin to discuss the concept of a particle in our theory.

Following [7], consider the Klein-Gordon lagrangian, in the absence of interactions,

LKG =
1

2
∂µφ ∂µφ−

1

2
m2φ2. (12)

8
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For convenience, we will add a constant term,

LKG =
1

2
∂µφ ∂µφ−

1

2
m2φ2 + Φ, (13)

which has no effect on the equations of motion but will be very useful in the mathematical

manipulations we are about to perform. In order to say that a field is quantized, it has to

satisfy the canonical commutation relations, which we are going to impose. Let’s define

the field momentum and the Hamiltonian density:

Π =
∂L
∂φ̇

= φ̇, (14)

H = Πφ̇− L =
1

2

(
Π2 +m2φ2 + (∇φ)2

)
− Φ, (15)

and we impose

[Π(t, xµ), φ(t, xν)] = −iδ3(xµ − xν), (16)

[φ(t, xµ), φ(t′, x′µ] = 0, (17)

[Π(t, xµ),Π(t′, x′µ] = 0, (18)

the canonical commutation relations. The next step is to write the field in a more

convenient form. Recalling the solution of the Klein-Gordon equation, the most general

soultion for φ is a superposition of the following form:

φ =

∫
d3p

f(p)

[
a(p)e−iEt+i~p.~x + b(p)eiEt−i~p.~x

]
, (19)

where we decided to write the coefficients of the plane waves as a ratio of two functions

for later convenience. If one imposes that the scalar field φ is real:
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φ† = φ. (20)

Taking the Hermitian conjugate has the following effect on one of the terms in the integral:

a(p)e−iEt+i~p.~x → a(p)†eiEt−i~p.~x, (21)

which implies (after imposing the reality condition):

b(p) = a(p)†, (22)

and we get

φ =

∫
d3p

f(p)

[
a(p)e−iEt+i~p.~x + a(p)†eiEt−i~p.~x

]
. (23)

Finally, we recall that the field φ must be Lorentz invariant. Well, in terms of four-vectors,

pµ.xµ = −Et+ ~p.~x, (24)

and the exponentials can be written as a sum of such terms (if one thinks in terms of

series). We need to make sure that the integration measure is also Lorentz invariant. It

is, however, an integral over the spatial momentum and that does not satisfy Lorentz

invariance. We will need the function f(p) to enforce this symmetry. A general invariant

measure we can write would look like

d4(p)δ(p2 −m2)Θ(p0), (25)

where we have the Dirac delta and the Heaviside step function. The step function ensures

causality, while the Dirac delta guarantees that

p2 +m2 = −E2 + ~p.~p+m2 = −m2 +m2 = 0. (26)

10
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We have a problem here: the first one is that the integral we have for the solution has

a measure proportional to d3p, while the invariant one is proportional to d4p, so one

integral need to be performed over the measure. We need to choose f(p) to solve both

issues. The solution is to write (recall that p0 = E)

∫
d4p =

∫
d3p dp0 ⇒

∫
d3p dp0δ(p2 +m2)Θ(p0) =

∫
d3p

2E
, (27)

and with this we use the auxiliary function f(p) to define our measure (we introduce the

(2π)3 factor for convenience) as:

dP =
d3p

(2π)32E
⇒ φ =

∫
dP
[
a(p)e−iEt+i~p.~x + a(p)†eiEt−i~p.~x

]
. (28)

By using this equation for φ and the canonical commutation relations, we get:

[a(p), a†(p′)] = (2π)3(2E)δ3(~p− ~p′), (29)

[a(p), a(p′)] = 0, (30)

[a†(p), a†(p′)] = 0. (31)

An interesting (but long) calculation is trying to obtain the Hamiltonian in terms of

a and a†. From the definition of Hamiltonian density integrated over all space:

H =

∫
d3x H =

∫
d3x

[
1

2

(
Π2 +m2φ2 + (∇φ)2

)
− Φ

]
, (32)

and the definition of the dirac delta function from a plane wave,

∫
d3x ei~x.~y = (2π)3δ3(~y), (33)

we get, after working out the algebra:
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H =
1

2

∫
dP E(a†a+ aa†)− 1

2

∫
d3xΦ, (34)

with the use of the commutation relations, we obtain:

H =
1

2

∫
dP E(a†a) +

1

2
δ3(0)

∫
d3p− 1

2

∫
d3x Φ (35)

The second term is clearly divergent. However, the factor Φ has not be chosen yet; in

fact, if we set

Φ =
1

2

δ3(0)
∫
d3p∫

d3x
, (36)

the divergence is cancelled. This is an example of renormalization, a concept that we will

approach later.

The whole point of this treatment was to see that we have reduced the scalar field to a

problem very similar to a harmonic oscillator, a fact that can be seen by the commutation

relations for the a and a†, which can be though as creation and annihilation operators

now. We may write:

a†(~p) |0〉 = |~p〉 , (37)

a(~p) |0〉 = 0, (38)

in addition,

〈~p2 | ~p1〉 = 〈0 | a(~p2)a†(~p1) | 0〉 , (39)

after using the commutation relation and the fact that 〈0 | 0〉 = 1,

〈~p2 | ~p1〉 = 〈0 | (2π)32Eδ3(~p1 − ~p2) + a†(~p1)a(~p2) | 0〉

= (2π)32Eδ3(~p1 − ~p2).

(40)
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An interesting thing happens when we consider complex scalar fields. Since it has

two degrees of freedom, the expansion has two independent parameters. The reality

condition we impose in the real field made the coefficients in the expansion be related by

a Hermitian conjugation; this will not be exactly the case again:

φ(x) =

∫
dP
[
a(p)eip.x + b†(p)e−ip.x

]
, (41)

φ†(x) =

∫
dP
[
a†(p)e−ip.x + b(p)eip.x

]
. (42)

Now we have two kinds of operators and particles, the kinds a and b. They are related for

having a common mass but opposite charge, composing a particle and antiparticle pair.

2.2.3 The Pauli exclusion principle

This principle is a consequence of the spin-statistics theorem, a result from axiomatic

quantum mechanics. Particles with integer spin (bosons) occupy symmetric quantum

states, while particles with half-integer spin (fermions) occupy antisymmetric states.

From the point of view of usual quantum mechanics, it means that the wave function

for two fermions is antisymmetric with respect to the operation of exchanging the parti-

cles, while the wave function for bosons is symmetric. In terms of commutation relations,

we impose that the operators for spin-half fields satisfy

{a†1a
†
2} = a†1a

†
2 + a†2a

†
1 = 0, (43)

which implies,

a†1a
†
2 = −a†2a

†
1 ⇒ a†1a

†
1 |0〉 = −a†1a

†
1 |0〉 ⇒ a†1a

†
1 |0〉 = 0. (44)

This means that if we quantize with anticommutation relations, particles are not allowed

to simultaneously occupy a given state.
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2.2.4 Canonical quantization of spin-half fields

As we did in the scalar field case, our objective here is to express the free fermion field

using the formalism of harmonic oscillators, through creation and destruction operators.

We begin with the Dirac field, following a procedure analogous to that used when we

were dealing with scalar fields.

By definition, a spin 1/2 particle has two states: spin up and spin down, so the field

has to be summed over these possibilities. The most general solution is

ψD(x) =
2∑
j=1

∫
d̂p
[
aj(~p)bj(~p)e

ipx + c†j(~p)dj(~p)e
−ipx

]
, (45)

where we have aj is the lowering operator for the particle and c†j as the raising operator for

the antiparticle. The raising operator for the particle and the lowering for the antiparticle

can be obtained if we take the charge conjugate of ψD we will obtain the raising operator

for the particle and the lowering for the antiparticle. The terms bj and dj are contant

spinors.

In order to implement Pauli’s exclusion principle, we enforce anti-commutation rela-

tions.

{ψα(t, ~x), ψ̄β(t, ~x)} = δ3(~x− ~x′)(γ0)αβ. (46)

Using our expression for ψD,

{a†j(~p), cj′(~p′)} = 2ωδss′(2π)3δ3(~p− ~p′), (47)

{cj(~p), a†j′(~p′)} = 2ωδss′(2π)3δ3(~p− ~p′). (48)

We have reduced the problem to that of a harmonic oscillator. Following the same steps

for the scalar fields [7], we obtain
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H =
2∑
j=1

∫
dp̂ E[a†j(~p)aj(~p) + c†j(~p)cj(~p)]− λ. (49)

where λ is an infinite onstant that can be subtracted off through methods similar to

those employed in the section for scalar fields. For Majorana fields we only have one kind

of particle,

ψM =
2∑
j=1

∫
dp̂ [aj(~p)dj(~p)e

ikx + a†j(~p)bj(~p)e
−ikx], (50)

and,

H =
2∑
j=1

∫
dp̂ Ea†j(~p)aj(~p). (51)

2.3 Symmetry breaking

Many features of the Standard Model and modern particle physics are based on sym-

metry breaking. For example, the Weak and the Electromagnetic forces emerge after the

symmetry breaking of an Electroweak theory, while the gauge bosons become massive.

It is clear why particles need mass, but in particular for the gauge bosons, who travel as

virtual particles “carrying” the forces, their mass is crucial to determine the range of the

interaction (by the uncertainty principle). In this section, we will explore this concept in

detail. Our main references here will be [7] and [6].

2.3.1 The Abelian case and the Goldstone Theorem

W will look first at symmetries generated by Abelian groups, and then consider the

non-Abelian case. As we know, the Klein-Gordon Lagrangian is invariant under global

gauge transformations, so we start with it. Consider the complex boson case,

L = −1

2
∂µφ†∂µφ−

1

2
m2φ†φ = −1

2
∂µφ†∂µφ− V, (52)

where we defined
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V =
1

2
m2φ†φ. (53)

Figure 1: Potential before and after symmetry breaking

We have a minimum where φ†φ = 0, which corresponds to to the vacuum. Now

consider the modified (by two real constants) potential:

V =
1

2
m2φ†φ→ 1

2
λm2(φ†φ− Φ)2, (54)

which still has the global U(1) symmetry. The minimum, however, is not the same

anymore. It is not a point, but the set of points defined by | φ |= Φ. Note that the gauge

transformation

φ→ eiαφ, (55)

can be used to solve this problem. We choose a gauge (a value of α) that makes the

vacuum real and equal to,

φ = Φ, (56)

and define that as our vacuum state. The U(1) symmetry is not there anymore, and we

have gauge fixed the symmetry. Now, we will expand around the new vacuum Φ,
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φ = Φ + α + iβ, (57)

and the reparametrized Lagrangian becomes

L = −1

2
∂µα∂µα−

1

2
∂µβ∂µβ − 2λm2α2Φ2 − 1

2
λm2

(
α4 + α2β2 + β4 + 4Φα3 + 4Φαβ2

)
.

(58)

Under these changes, we now have a theory that describes a number of fields:

I) Real massive scalar field α,

II) Real massless scalar field β,

III) Interaction terms combining α’s and β’s;

and doesn’t have an explicit U(1) symmetry. This is why we say we are “breaking the

symmetry”; by expanding around the new vacuum, a new massless field β was introduced.

It can be shown that this happens whenever a global symmetry is broken, a massless boson

is always introduced: they are called Goldstone bosons. This a general result, known as

Goldstone Theorem (for proofs of the Theorem, see [23].

Let’s now look at the case of a local U(1) symmetry for a complex scalar field by

considering the following Lagrangian without an external source)

L =
1

2

[
(∂µ − iqAµ)φ†

]
[(∂µ + iqAµ)φ]− 1

4
F µνFµν −

1

2
λm2(φ†φ− Φ)2, (59)

The vacuum state is degenerate, like before, and happens when | φ |= Φ. Since we can

choose the phase eiα to be different at every point, we can always set it to perform a

rotation on the field φ at every point such that:

φ→ eiα(x)φ ∈ R, (60)

it belongs to the real numbers. Note that this is not restricted to the vacuum, like before.

Now that we have performed the gauge fixing, we expand around the new vacuum,
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φ = Φ + h,∈ R, (61)

and obtain the new Lagrangian,

L = −1

2
∂µh∂µh−

1

4
F µνFµν − 2λ(mhΦ)2 − 1

2
q2Φ2A2 + (...), (62)

where we omitted interaction terms. Before symmetry breaking, we had a massless field

φ and a massless field Aµ (the photon). Now, the force-carrying field Aµ has aqcuired

mass qΦ and we also have a real scalar field h with mass
√

4λm2Φ2. Therefore, mass was

introduced through symmetry breaking. This is the Higgs mechanism, and h is the Higgs

boson. Now, a local symmetry was broken, and the result is that the gauge field is now

massive.

2.3.2 Symmetry breaking with a non-Abelian group

To make the result more general, consider now a collection of N fields φ, scalar or

spinors. Following [7], let L denote the Lagrangian of the system, which is invariant

under SO(N) or SU(N). Let’s suppose that we are working in an certain representation

R, spanned by the set of generators T a of dimension N × N . The gauge field can be

expanded in terms of the generators, since Aµ is a matrix of order D(R)×D(R).

Aµ = AµaT
a. (63)

Each coefficient Aµa on the linear expansion can be thought of an independent scalar field.

Since the gauge group has N generators, we have N such fields.

To illustrate this, let’s consider a concrete example. Take the gauge group SU(N) in

the fundamental representation, acting on a collection of N complex scalar fields,

{φj} ∈ C, j = 1...N. (64)

As we did in the motivation example for the local U(1) case, we used the gauge group
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to make the VEV (Vacuum Expectation Value) real. Now, we rotate everything to fall

into a single component of the field, say φN

〈0 | φj |〉 = 〈0 | φN | 0〉 δj,N = Φ δj,N , (65)

where we introduced the Kronecker delta to say that all VEV’s are zero except for the

one of ΦN . Expanding around the new vacuum:

φj = φj, j = 1...N − 1; (66)

φN = Φ + h. (67)

so that in the vaccum state, we have for the VEV of the fields,



0

0

...

Φ


,

Now take an element of SU(N) and act on the VEV,



a11 a12 ... a1N

a21 a22 ... a2N

... .... ... ...

aN1 aN2 ... aNN





0

0

...

Φ


=



a1NΦ

a2NΦ

...

aNNΦ


,

Due to the fact that we have a VEV with all but one non-zero value, only the last

collumn of the SU(N) group element is affected. The other N-1 rows and collumns are

unnafected, and we have SU(N-1) left. Thus, we have broken

SU(N)→ SU(N − 1). (68)
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2.4 The Standard Model of Particle Physics

In this section, we will provide an overview of the Standard Model. This is an ex-

tremely vast subject, and we will not explore all of its aspects in depth. Our main focus

will mostly be on the Electroweak sector and the Higgs boson. We will follow [7] very

closely, using also [6] when convenient.

Ou approach will be as follows: we will separate our analysis into the subgroups

that act on each sector of our interest. We begin by looking at the Higgs fields and

symmetry breaking. Once we understand the mechanism and how the gauge bosons for

the Electroweak sector become massive, we move to the study of fermions, leptons and

quarks, where we apply the results we obtained in the Higgs discussion. We will also

comment quickly on the gluons, from the Strong force (the SU(3) portion).

2.4.1 The Electroweak sector

The gauge group here is SU(2)L × U(1)γ. Our approach will start with the Higgs

complex doublet φ in the representation (2,−1/2). Through the Higgs mechanism, the

potential we will define for φ will (spontaneously) break the symmetry of the vacuum.

The results will be:

I) A U(1) symmetry that will describe a long ranged force: Electromagnetism.

II) Massive gauge bosons that describe the weak force, which is now a short ranged

renormalizable gauge theory.

It is important to mention that the pattern assocaited with the masses of the gauge

bososn provides an experimental test for the SM.

Let’s construct the Lagrangian and all other important quantities of this sector; we

begin by writing the covariant derivative. The generators of SU(2) on the representation

2 are given by

T a2 =
1

2
σa, (69)
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which are the Pauli matrices, and we denote the gauge field by W a
µ .

For the U(1)γ group, the generator is

Y = C

 1 0

0 1

 ,

with C = -1/2 as the hypercherge and Bµ as the gauge field. The covariant derivative

becomes

(Dµφ)i = ∂µφi − i[g1BµY + g2W
a
µT

a
2 ]ijφj, (70)

where g1 and g2 are the coupling constants. If we write it expliciltly in matrix form,

 Dµφ1

Dµφ2

 =

 ∂µφ1 + i
2
(g2W

3
µ − g1Bµ)φ1) + ig2

2
(W 1

µ − iW 2
µ)φ2

∂µφ2 + ig2
2

(W 1
µ + iW 2

µ)φ1 + i
2
(g2W

3
µ + g1Bµ)φ2


.

Our Lagrangian has the form

L = −1

2
Dµφ

†
iD

µφi −
1

4
λ

(
φ†φ− 1

2
Φ2

)2

. (71)

All the 1/2 factors are a metter of convention and are simple rescalings of λ and Φ. For

λ > 0, we have

| φ |= Φ√
2
, (72)

as the minimum. Now we will adress the symmetry breaking. As we did in the previous

sections, we perfomr two gauge transformations: the first is a global SU(2) to put the

VEV on the first component of φ, as in a rotation (that’s why only the first component on

the doublet is non-zero). With that fixed, we then perform a global U(1) transformation

to make the field real,
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〈0 | φ | 0〉 =
1√
2

 Φ

0

 ,

and now we may expand the field around this minimum,

φ(x) =
1√
2

 Φ + h(x)

0

 ,

from construction, h(x) is a real scalar field. This is the Unitary Gauge for the Higgs

field.

With these expresssions, we may go back to the Lagrangian and calculate is VEV. At

the minimum,

L〈φ〉 = −1

8

(
Φ 0

) g2W
3
µ − g1Bµ g2(W 1

µ − iW 2
µ)

g2(W 1
µ + iW 2

µ) −g2W
3
µ − g1Bµ


2 Φ

0

 ,

which is the kinetic term.

The next step is to find the masses of the four gauge bosons, W a
µ (three of them) and

Bµ. We rewrite the equation above (VEV for the Lagrangian) in a more convenient form,

L〈φ〉 = −1

8
Φ2V T

µ



g2
2 0 0 0

0 g2
2 0 0

0 0 g2
2 −g1g2

0 0 −g1g2 g2
1


V µ, V µ =



W 1
µ

W 2
µ

W 3
µ

Bµ


.

Looking at the mass matrix above, we see that two of the gauge bosons, W 1
µ and

W 2
µ are diagonalized and have mass. We need to worry about the following block of the

matrix,

M =

 g2
2 −g1g2

−g1g2 g2
1

 ,

which mixes W 3
µ and Bµ. Let’s study it in more detail.
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The first thing we notice is that its determinant is zero, so at least one of its eigenvalues

has to be zero. In order to see this, recall that when diagonalized, all the eigenvalues of a

matrix are on the diagonal; diagonalization, however, is a linear transformation and the

determinant remains unchanged. So, at least on of the eigenvalues need to be null. The

physical meaning of this is that there is still a massless gauge boson left. The eigenvalues

for the block M are

{
0,−1

8
Φ2(g2

1 + g2
2)

}
, (73)

which are associated to a massless state eigenvector and a massive one, repectively. Of

course, the eigenvalues for the whole matrix are:

{
0,−1

8
Φ2(g2

1 + g2
2),−1

8
Φ2g2

1,−
1

8
Φ2g2

2

}
. (74)

Let’s now look at the normalized eigenvectors that arise from the diagonalization process.

They are:

Aµ =
1√

g2
1 + g2

2



0

0

g1

g2


, Zµ =

1√
g2

1 + g2
2



0

0

g2

−g1


,

where Zµ can be written as the following linear combination:

Zµ = g2W
3
µ − g1Bµ. (75)

If we look at the eigenvectors and their parameters, we may think of the mixing of

states in a geometric way, and we define the Weak Mixing Angle by

θW = tan−1

(
g1

g2

)
. (76)

and its trigonometric functions,
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sW = sin(θW ) =
g1√
g2

1 + g2
2

, (77)

cW = cos(θW ) =
g2√
g2

1 + g2
2

. (78)

And now, we can also write four gauge fields are linear combinations of the original

four we defined in the beginning,

W+
µ =

1√
2

(W 1
µ − iW 2

µ), (79)

W−
µ =

1√
2

(W 1
µ + iW 2

µ), (80)

Zµ = cWW
3
µ − sWBµ, (81)

Aµ = sWW
3
µ + cWBµ, (82)

where

 Zµ

Aµ

 =

 W 3
µcosθW −BµsinθW

W 3
µsinθW +BµcosθW

⇒ R(θW )

 W 3
µ

Bµ

 ,

with R(θW ) being a rotation. All of these equations may be inverted,

W 1
µ =

1√
2

(W+
µ +W−

µ ), (83)

W 2
µ =

i√
2

(W+
µ −W−

µ ), (84)

Zµ = cWZ
3
µ + sWAµ, (85)
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Bµ = −sWZµ + cWAµ. (86)

It is important to mention that with this definiiton of the fields W±, all terms in the

lagrangian have an explicit U(1) symmetry related to charge conservation. Note that

Zµ and Aµ are a massive and a massless linear combination of W 3
µ and Bµ, menaing

that they are a combination of SU(2) and U(1). On the other hand, W±
µ are massive

linear combinations of W 1
µ and W 2

µ , meaning they are only from SU(2). Thus, W±
µ are

linear combinations of the fields associated with non-Cartan generators of SU(2), while

Zµ and Aµ are linear combinations of fields associated to Cartan generators of SU(2) and

U(1). The consequence is that the fields W±
µ will interact and change the charge, we see

that they have the form of raising and lowering operators, while Zµ, Aµ interact without

changing charge.

In terms of the recently defined gauge fields, the kinetic term in the Lagrangian

becomes

Lφ = −M2
WW

+µW−
µ −

1

2
M2

ZZ
µZµ, (87)

where

MW =
g2Φ

2
, MZ =

Mw

cw
=
g2Φ

2cw
=

Φ

2

√
g2

1 + g2
2, (88)

and the fields W+
µ , W

−
µ , Zµ are massive while Aµ remains massless through the sym-

metry breaking.

From this result, we draw some conclusions.

I) The W and Z bosons (masses ≈ 80.4 GeV and ≈ 91.2 GeV respectively) are the

carries of the Weak Force, and their masses account for the short range of the force

(≈ 10−18 m)

II) Aµ is massless and is the carrier of the Electromagnetism, a result of the unbroken

U(1) symmetry.

Note that above the symmetry breaking scale we have a single theory: the Electroweak
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Theory, with four massless bosons; when the symmetry is broken, we are left with the

Weak and the Electromagnetic forces.

The neutrino event mentioned in the introduction is probe of the Weak interaction.

Since it doesn’t have electromagnetic charge, its interactions must be dictacted by the

Weak force. There are essentially two processes involved this force: through neutral

and charged currents. They will be explored in more detail in the Electroweak Physics

chapter.

We are now ready to write the full Lagrangian for our effective theory of h(x). Our

potential is (after using φ = Φ + h(x))

V =
1

4
λ

(
φ†φ− Φ2

2

)2

⇒ V =
λΦ2h2

4
+
λΦh3

4
+
λh4

16
. (89)

Note that the term

√
λ

2
Φ, (90)

gives the mass of the Higgs and the other terms account for interactions. The kinetic

term is

−1

2
∂µh∂

µh. (91)

We are still missing the gauge fields, and we need to get kinetic terms for them as well.

We will do so by looking at the original fields before the symmetry is broken. We begin

with Bµ. This is a U(1) gauge field, and we treat this case in Appendix B. Following the

result presented in the appendix, we define

Bµν = ∂µBν − ∂νBµ. (92)

Now, we have the gauge fields W 1
µ , W

2
µ , W

3
µ , and we need to do the same for them.

Note that they are related to SU(2), a non-Abelian group. In Appendix B, we also

considered the case of an arbitrary non-Abelian group; applying the results here:
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F 1
µν = ∂µW

1
ν − ∂νW 1

µ + g2(W 2
µW

3
ν −W 2

νW
3
µ), (93)

F 2
µν = ∂µW

2
ν − ∂νW 2

µ + g2(W 3
µW

1
ν −W 3

νW
1
µ), (94)

F 3
µν = ∂µW

3
ν − ∂νW 3

µ + g2(W 1
µW

2
ν −W 1

νW
2
µ), (95)

which yelds

LKin = −1

4
F µν
a F a

µν −
1

4
BµνBµν . (96)

We know how the old fields are related to the fields after symmetry breaking, so we can

rewrite the kinetic Lagrangian to get:

Le{{ =
1

4
F µνFµν −

1

4
ZµνZµν −D†µW−µDµW

+
ν +D†µW−νDνW

+
µ

+ ie(F µν + cotθWZ
µν)W+

µ W
−
ν

− 1

2

(
e2

sin2θW

)
(W+µW−

µ W
+νW−

ν −W+µW+
µ W

−νW−
ν )×(

M2
WW

+µW−
µ +

1

2
M2

ZZ
µZµ

)(
1 +

h

ν

)2

− 1

2
∂µh∂µh−

1

2
mhh

2 − 1

2

m2
h

ν
h3 − 1

8

m2
h

ν2
h4,

(97)

where

Fµν = ∂µAν − ∂νAµ, (98)

Zµν = ∂µZν − ∂νZµ, (99)

Dµ = ∂µ − ie(Aµ + cot θWZµ). (100)
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2.4.2 Leptons and Quarks

First, we define what we mean by a lepton: a lepton is a particle that interacts with

the group SU(2)L×U(1)γ and possesses spin half. In total, we have six flavors of leptons,

which belong to three generations (or families). Here, we list them.

I) First Generation: electron (e) and electron neutrino νe,

II) Second Generation: muon (µ) and muon neutrino νµ,

III) Third Generation: tau (τ) and tau neutrino ντ .

Each of the generations behave in the same way, so all we need to do is to derive the

structure for one of the generations and then make three copies and then allow mixing

between those copies.

The first problem we encounter is that we only need a left-handed neutrino (it only

interacts through the Weak force and gravity), but the electron requires a left-handed

and a right-handed state. To deal with this problem, we introduce the neutrino as part

of a left-handed SU(2)L doublet together with the left handed electron,

L =

 νe

e

 ,

and we set the right-handed electron as a singlet under the SU(2)L.

To make sense of the statements above, we now define two fields, L and ē, where L is

the doublet we just defined (both are left-handed Weyl spinors). From our definition of

L, it belongs to the (2,-1/2) representation, while ē is in the (1,1) representation. Note

that the neutrino is part of the doublet, and therefore does not possess a representation

just for himself.

As we did in the beginning of the previous section, we can write the covariant deriva-

tive for these fields,

(DµL)i = ∂µLi − ig2W
a
µ (T a)ijLj − ig1BµYLLI , (101)
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Dµē = ∂µē− ig1BµYēē, (102)

where

YL = −1

2

 1 0

0 1

 , Yē = (1)

 1 0

0 1

 .

Since ē is in the trivial representation, it has no SU(2) term in its covariant derivative.

If we follow the Lagrangian density for spin half fields (Dirac Lagrangian), we get

LKIN = iL†iσ̄µ(DµL)i + iē†σ̄µDµē. (103)

The next step is to write the covariant derivative presented in this section in terms of

the gauge fields after symmetry breaking. In order to do so, we will separate the analysis

in two parts: the Cartan (Aµ and Zµ) and the non-Cartan (W±
µ ).

For the non-Cartan part:

g2(W 1
µT

1 +W 2
µT

2) =
1

2
g2

W 1
µ

 0 1

1 0

+W 2
µ

 0 −i

i 0


 =

g2√
2

 0 W+
µ

W−
µ 0

 ,

(104)

since

W±
µ = W 1

µ ∓ iW 2
µ . (105)

For the Cartan part:

g2W
3
µT

3 + g1BµY =
e

sW
(sWAµ + cWZµ)T 3 +

e

cW
(cWAµ − sWZµ)Y

= e(Aµ + cotθWZµ)T 3 + e(Aµ − tanθWZµ)Y

= e(T 3 + Y )Aµ + e(cotθWT
3 − tanθWY )Zµ.

(106)
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Since Aµ is the photon and e the elecric charge, we conclude that T 3 + Y , a linear

combination of the generators of SU(2) × U(1), must be the generator of the electric

charge. Let’s look at this closely. First, T 3 is given by

T 3 =
1

2

1

2
σ3. (107)

Note that

T 3L =
1

2

 1 0

0 1


 νe

e

 =
1

2

 νe

−e

 , (108)

YLL = −1

2

 1 0

0 1


 νe

e

 = −1

2

 νe

e

 , (109)

ē does not carry T 3 charge, giving an eigenvalue zero; for Yē, the eigenvalue is 1. Thus,

T 3νe =
1

2
νe, (110)

Y νe = −1

2
νe, (111)

T 3e = −1

3
e, (112)

Ye = −1

2
e, (113)

T 3ē = 0, (114)

Y ē = ē. (115)

Define

30



www.manaraa.com

Q = T 3 + Y ⇒ Qνe = 0, Qe = −e, Qē = ē. (116)

Thus, the electron neutrino is massless, the electron has charge −e and the positron has

charge +e, as expected.

Now we need to incorporate mass in our theory, since we know that electrons and

neutrinos are massive. The first option is clearly to try to directly write the mass in the

Lagrangian, but that violates Lorentz invariance [7]. However, we can add a term of the

form

LY ukawa = −yεijφi(Lj ē) + h.c., (117)

and use the Higgs mechanism. In the expression above, y is the Yukawa coupling, (L e)

is the Lorentz invariant combination of the supressed spinor indices for L and ē, εij is the

totally antisymmetric tensor which has the effect of combining the two SU(2) doublets

into a singlet. In this term we only have singlets after performing all the contractions

and the net hypercharge is zero.

Now, we go to the Unitary Gauge,

φ2 = 0, φ1 =
1√
2

(ν + h(x)), (118)

which gives

LY ukawa = −yεijφi(Lj ē) + h.c. = −y(φ1L2 − φ2L1)ē) + h.c.

− 1√
2
y(ν + h)L2ē+ h.c. = − 1√

2
y(ν + h)(eē)− 1√

2
y(ν + h)(ē†e†)

= − 1√
2
yνζ̄ζ − 1√

2
yνhζ̄ζ, ζ =

 e

iσ2ē†

 , ζ̄ = ζ†γ0.

(119)

ζ is the Dirac field for the electron (the term e is the electron and the other the positron).

The mass term for these particles is
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me =
yν√

2
. (120)

The problem of assigning mass to the neutrino is a non-trivial one, so we will not present

it in detail here (see [6]).

Zµ and Aµ interact without affecting the particles charges, since they are Cartan

gauge particles. W± acts as raising oeprators for SU(2). We can see its effect as follows:

W+ interacts with a left-handed electron rasing its charge and making it a neutrino, but

it does not interact with a left-handed neutrino. W− interacts with a neutrino, making

it an electron. In Weak force terms, the exchange of a Zµ is a neutral current and the

exchange of W± is a charged current, as we will see in the Electroweak chapter.

We now turn our attention to quarks, and we will proceed in a way similar to what

was done to leptons, working with one generation. We define the fields

Q, ū, d̄, (121)

which are in the representation (3,2,+1/6), (3̄, 1,−2/3) and (3, 1,+1/2) of the Standard

Model gauge group. Note that Q is a doublet under SU(2),

Q =

 u

d

 , (122)

just as we defined L, and Q is the left handed part of u and d. The covariant derivatives

are

(DµQ)αi = ∂µQαi − ig3A
a
µ(T a3 )βαQβi − ig2W

a
µ (T a2 )jiqβj − ig1

(
1

6

)
bµQαi, (123)

(Dµū)α = ∂µū
α − g3A

a
µ(T a3̄ )αβ ū

β − ig1

(
−2

3

)
Bµū

α, (124)

32



www.manaraa.com

(Dµd̄)α = ∂µd̄
α − ig3A

a
µ(Tα3̄ )αβ d̄

β − ig1

(
1

3

)
Bµd̄

α. (125)

In this notation, i is an SU(2)L index and α is an SU(3)C index, which is lowered for

the 3 representation and raised for the 3̄ representation. Aaµ is the gluon field, and the 8

generators acting on the representation 3 are T a3 , and for 3̄ they are T a3̄ = −(T a3 )?.

We need to apply symmetry breaking in order to give mass to quarks. We begin wuth

the Yukawa Lagrangian,

LY ukawa = −y′εijφiQαj d̄α − y′′φ†iQαiūα + h.c, (126)

and after symmetry breaking,

LY ukawa = − 1√
2
y′(ν + h)D̄αDα −

1√
2
y′′(ν + h)ŪαUα, (127)

where

Dα =

 dα

īσ2d?α

 , Uα =

 uα

īσ2u?α

 , (128)

and the masses are given by

md =
y′ν√

2
, mu =

y′′ν√
2
. (129)

The non-Cartan and Cartan parts of the covariant derivatives when written on terms of

the low-energy gauge fields are

g2W
1
µT

1 + g2W
2
µT

2 =
g2√

2

 0 W+
µ

W−
µ 0

 (130)

g2W
3
µT

3 + g1BµY = eQAµ +
e

sW cW
(T 3 − sWQ)Zµ, (131)

where Q = T 3 + Y . The electric charges are
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Qu =
2

3
u, (132)

Qd = −1

3
d, (133)

Qū = −2

3
ū, (134)

Qd̄ =
1

3
d̄. (135)

As mentioned before, the Standard Model has three generations of particles; each one

of them possessing the structure described above. In order to allow couplings among

generations, one must generalize the Yukawa couplings (see [7], [6]).
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3 Elementary Topics in Quantum Field The-

ory

In this chapter, we present some results on Quantum Field Theory. Our goal is not

to provide a deep explanation on this (extremely vast) topic, but to emphasize some

fundamental concepts that will be useful later. The main references here will be [6], [11]

and [10], but we will use others as necessary.

3.1 Non-relativistic perturbation theory

Let’s discuss perturbation theory in the context of non-relativistic quantum mechan-

ics, where all the dynamics is given by Schrodinger’s equation. Within this framework,

suppose that we have a Hamiltonian which can be written as a sum of two terms,

H = H0 + V, (136)

where H0 is a time independent Hamiltonian (one that we know how to obtain the

equations of motion from) and V (t) is a time dependent potential, small compared to

H0, that can be treated as a perturbation. In our context, H0 can be used to describe a

free particle as our initial and final states for instance.

Now, we know that the eigenstates of H0 satisfy

H0 |n〉 = En |n〉 , (137)

〈m | n〉 =

∫
V

d3x φ?mφn = δmn,
∑
n

|n〉 〈n| = I, (138)
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as they form a complete set of orthogonal states. A general solution of a problem defined

by H0 is given by

|ψn(t)〉 = e−itH0/~ |n〉 = e−itEn/~ |n〉 . (139)

At this point, we consider the effect of the perturbing potential, which is ”“turned on”

during a time interval, let’s say, from 0 to T . The Schrodinger equation becomes

i~
d

dt
|ψ(t)〉 = (H0 + V ) |ψ(t)〉 . (140)

Since the eigenstates of H0 form a complete set, we can expand the solution for the

problem above as follows

|ψ〉 =
∑
n

cn(t)e−iEnt |n〉 . (141)

This is the usual method for solving this problem. Instead, we will work with the interac-

tion picture [19], because it makes the derivation less cumbersome and easier to generalize

to higher orders of perturbation. Thus,

i~
d

dt
|ψ〉I = VI(t) |ψ〉I , (142)

with

|ψ〉I = eitH0t |ψ〉 , VI = eitH0tV e−itH0t. (143)

In this picture, the time evolution operator appears as

|ψ(t)〉I = eitH0tU(t, ti) |ψ(ti)〉 = eitH0tU(t, ti)e
−itH0t |ψ(ti)〉I = UI |ψ(ti)〉I . (144)

Using this result,
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i~
d

dt
UI(t, ti) = VIUI(tti), (145)

and the solution for this is the integral equation

UI(t, ti) = I− i

~

∫ t

ti

dt′VI(t
′)UI(t

′, ti), (146)

where the initial condition chosen was

UI(ti, ti) = I. (147)

The way time-dependent perturbation theory works is to provide approximate solutions

to the expression above through iterations, under the assumption that the perturbing

potential is small. To make the point clear, the first order solution is obtained when we

set the evolution operator equal to the identity in the integral,

U
(1)
I = I− i

~

∫ t

ti

dt′VI(t
′). (148)

The second order solution is given by

U
(2)
I = I− i

~

∫ t

ti

dt′VI(t
′)U

(1)
I ⇒ U

(2)
I =

I− i

~

∫ t

ti

dt′VI(t
′) +

(
− i
~

)2 ∫ t

ti

dt′′VI(t
′′)

∫ t′′

ti

dt′′′VI(t
′′′).

(149)

If one keeps following this procedure the result obtained is known as the Dyson series,

with UI being

UI(ti, ti) = I− i

~

∫ t

ti

dt1VI(t1) +

(
− i
~

)2 ∫ t

ti

dt2VI(t2)

∫ t2

ti

dt3VI(t3) + ...(
− i
~

)n ∫ t

ti

dt2VI(t2)

∫ t2

ti

dt3VI(t3)

∫ t4

ti

dt4VI(t4)...

∫ tn−1

ti

dtnVI(tn) + ...

(150)

The Dyson series can be used to define the S-matrix (S comes from scattering). The
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whole idea remains the same; the difference is that now we will split a Hamiltonian density

into a known portion and an interaction portion, so that we can write

S =
∞∑
n=0

(−1)n

n!

∫ ∞
−∞

dx4
1...

∫ ∞
−∞

dx4
nT [H1

IH
2
I ...H

n
I ], (151)

where T denotes time-ordering (we need to respect the order of the operators and integrals

since each integral has limits of integration that depend on the previous integration). In

addition, note that S is unitary operator.

We could try to define a transition probability now. Let |i〉 denote the initial unper-

turbed state, while |f〉 is the final one. We have:

Tfi =| 〈f |UI(t, ti) |i〉 |2=| 〈f | |i〉 − i

~

∫ t

0

dt′eiωfit
′ 〈f |V (t′) |i〉+ ... |2 . (152)

Note that

〈f |VI(t′) |i〉 = 〈f | eiH0t′/~V (t′)eiH0t−′/~ |i〉 = eiωfit
′ 〈f |V (t′) |i〉 ,

ωfi =
Ef − Ei

~
= Ef − Ei (~ = 1).

(153)

Since 〈f | |i〉 = δij, the result at first order for f 6= i is

Tfi =| − i
~

∫ t

0

dt′eiωfit
′ 〈f |V (t′) |i〉 |2 . (154)

In order to better understand this expression and check its consistency, we now look at

the integral when our potential is time independent. This yelds

−iVfi
∫ ∞
−∞

dteiωfit = −2πi

~
Vfiδ(Ef − Ei). (155)

We can interpret the delta function as the statement that energy is conserved in the

transition, but it poses a problem with the normalization of this expression. Instead, we

should work with a transition probability per unit time, and define it as
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W = lim
T→∞

Tfi
T
, (156)

which implies

W = lim
T→∞

2π

~2

|Vfi|2

T
δ(Ef − Ei)

∫ +T/2

−T/2
dt ei(Ef−Ei)t/~

= lim
T→∞

2π

~
|Vfi|2

T
δ(Ef − Ei)

∫ +T/2

−T/2
dt

=
2π

~
|Vfi|2δ(Ef − Ei) . (157)

This expression needs to be integrated to have physical meaning. If we denote by

ρ(Ef ) the density of final states, with ρ(Ef )dEf being the number of states in the energy

interval (Ef , Ef + dEf ), the result is

Wfi =
2π

~2

∫
dEfρ(Ef ) | Vfi |2 δ(Ef − Ei) =

2π

~2
| Vfi |2 ρ(Ei). (158)

Under those assumptions, we can look at higher order terms through the Dyson series.

Consider, for example, the second order term, which is proportional to the factor

∑
n

VfnVni

∫ ∞
−∞

dt2e
i(Ef−Ei)t2~

∫ t2

−∞
dt3e

i(Ef−Ei)t3/~. (159)

In order to regularize the integral ofer t3, we introduce a parameter ε, such that the

original expression is recovered in the limit ε→ 0.

∫ t2

−∞
dt3e

i(Ef−Ei)t3~ →
∫ t2

−∞
dt3e

i(Ef−Ei−ε)t3/~ = i
ei(Ef−Ei−ε)t2/~

Ef − Ei + iε
, (160)

and the second order correction is given by

T
(2)
fi = −2πi

~
∑
n

VfnVni
Ei − En + iε

δ(Ef − Ei), (161)

and we see that the effect of considering the higher order is
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Vfi → Vfi +
∑
n

VfnVni
Ei − En + iε

. (162)

3.2 Invariant amplitude

Particle physics has essentially three ways of probing theories: by looking at bound

states, scattering and decays. In particular, scattering and decays are crucial to the study

of quantum field theory. As it was mentioned in the Standard Model chapter, particle

interactions are mediated by the exchange of virtual particles, which are associated with

the Cartan generators of the group that defines the interaction. Those particles can not

travel indefinetely, as they are subject to the uncertainty principle, and that explains the

range of the different forces. When we calculate cross sections, the interaction between

particles can be descrided by free fields in the initial and the final state, while the exchange

of virtual particles (the interaction) happens in between.

The invariant amplitude M for scattering is the sum of each possible interaction

history over all possible intermediate states. This notion fits nicely with the idea of

path integrals and perturbation theory, where the order of perturbation is given by the

number of times the interaction Hamiltonian acts. The way that we calculate the invariant

amplitude M, summing the terms of this perturbative approach, is through the use of

Feynman diagrams.

For the discussion that follows, we will assume for that M is given. A detailed

prescription on how to find through perturbative methods will be explained when we

present the Feynman rules. In the next section, we will study the role the invariant

amplitude plays when we consider decays and scatterings.

3.3 Decay rates and cross-sections

As it was mentioned, bound states, decays and scatterings are the probes of particle

physics. For decays, a quantity of great interest is the lifetime of the particle we are

studying, but there are a few caveats we need to be aware of when we try to understand

a decay process. The first is with respect to the inertial frame we are using: due to
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special relativity, the lifetime depends if we look at the process from the rest frame or

a lab frame. The second observation is known from our studies of radioacive material:

there is an inherently randomness in decays, which, in simpler terms, is equivalent to

saying that particles have no memory; the chances of a muon decaying at a given instant

of time is independent of the moment of time when the muon was created. Thus, what

we can truly measure and understand is the mean lifetime of particles in a large sample.

We define the notion of decay rate Γ, the probability per unit time that any given

particle will decay. Thus, the number of particles (before decaying) in a certain sample

is a function of time, and this number changes as:

dN = −ΓNdt⇒ N(t) = N(t0)etΓ, (163)

which motivates the definition for the mean lifetime,

τ =
1

Γ
. (164)

Another important fact (which has been observed on experiments) is that a given

particle can have multiple decay paths. Later, we will consider charged pions, which

are of great interest for us, as their decay produce neutrinos. A charged pion can decay

through many routes,

π− → e− + νe, µ
− + νµ, (165)

and so on. Quantum field theory allows us to predict those different routes and calculate

the chance that a certain particle decays choosing a certain route, as we will see later in

this chapter. Thus, it is of interest to us to define the notion of branching ratios. Let Γi

be the deay rate through a certain mode for a given particle. We define the branching

ration fot the i− th mode as

B =
Γi

Γtotal
, (166)
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where

Γtotal =
∑
i

Γi. (167)

We also define the lifetime of a particle as

τ =
1

Γtotal
. (168)

For scattering, the quantity of interest is the cross-section. Note, however, that we

a re not talking about billiard balls, but quantum particles. In classical mechanics, you

either hit or miss the target, but in our context a test particle can be deflected by getting

close enough to its target and being subject through interaction with the target.

Collisions can be elastic,

e+ p→ e+ p, (169)

or inelastic,

e+ p→ e+ p+ γ. (170)

The energy of the incident particle (as well as many other properties like helicity) plays

a crucial in the outcome of a scattering reaction. In particular, resonances can occur.

When this is the case, we can calculate the cross-section and see that there is a certain

energy that greatly increases it, and the particles, incident and target, form a short lived

semibound state before breaking apart. These resonant peaks in the cross-sections are

one of the main methods we have that allow the detection of short-lived particles.

Recalling the definition of the S-matrix in terms of the Dyson series,

S =
∞∑
n=0

(−1)n

n!

∫ ∞
−∞

dx4
1...

∫ ∞
−∞

dx4
nT [H1

IH
2
I ...H

n
I ], (171)

Now, we know that the 3-momentum can be used in quantum mechanics to form a

complete set of states. Now, we extended this notion for the 4-momentum in the following
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expressions (completeness and orthogonality)

1 =

∫
d4p

(2π)4
2πδ(p2 −m2)Θ(p0) |p〉 〈p| , (172)

〈p | p′〉 (2π)4δ4(pµ − pµ′) (173)

The first expression is the completeness relation. The integral is a combination of over

the usual integral over spatial components together with an integral over the zero-th

component of the 4-momentum (the energy), where the Heaviside function Θ(x) is intro-

duced to ensure energy positivity, while the delta function is the conservation of energy,

which constrains the components of the 4-momentum. The other numerical factors on

the expression are there for normalization purposes. Finally, the second expression is the

orthogonality relation.

Now, if we look at the Dyson series and keep terms up to first order while using the

definitions above, we obtain for the transition

〈f | S | i〉 = δfi − i(2π)4δ4(pµf − p
µ
i )Mfi (174)

Recall from the canonical quantization discussed before that we can create particles

by acting on the vacuum with a creation operator,

|p〉 = a† |p〉 , (175)

and if we want to create an arbitrary number of particles,

|p1, p2, ..., pn〉 = a†(p1)... = a†(pn) |0〉 . (176)

On the perturbation theory section, we introduced the result usually known as Fermi’s

Golden rule:

Tfi =
2π

~
| Vif |2 δ(Ef − Ei). (177)
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When the transtion we are talking about is related to scatterings and decays, the invariant

amplitude is what plays the role of V , since it is what describes the interaction. Thus,

in our context, we can see this result as:

(transition rate) = 2π |M |2 (phase space). (178)

Note that by “phase space” we are referring to energy, momentum and masses, which

will be subject to constraints, such as conservation laws, in those reactions. Using these

results, one can obtain general expressions for the decay rate and the cross section.

According to [11], we have:

I) Particle decays

Consider the following reaction:

1→ 2 + 3 + 4 + ...+ n, (179)

which has a decay rate given by

dΓ =|M |2 C

2m1

(2π)4δ4(pµ1 − p
µ
2 − ...− pµn)

n∏
i=2

d3~pi
2(2π)3Ei

, (180)

where C is a product of factors of the form

1

j!
, (181)

to account for groups of j identical particles in the final state.

II) Particle scattering

Consider the reaction

1 + 2→ 3 + 4 + ...+ n, (182)

which has a cross section given by (the definition of C remains the same here)
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dσ =|M |2 C

4
√

(pµ1p2 µ)2 − (m1m2c2)2
(2π)4δ4(pµ1−p

µ
2− ...−pµn)

n∏
i=3

d3~pi
2(2π)3Ei

, (183)

Just to have a better intuition on how we operate with these equations, consider the

decay of a neutral pion, which we will try to describe using this framework. Suppose that

we know the value of M,

π0 → γ + γ, (184)

and we choose to work in the rest frame of the pion. The pion is the particle 1, while the

photons are 2 and 3. Note that:

E1 = mc2, ~p1 = 0, (185)

and

m2 = m3 = 0, E2 =| ~p2 | c, E3 =| ~p3 | c. (186)

In addition,

δ4(pµ1 − p
µ
2 − p

µ
3) = δ

(
mc− E2

c
− E3

c

)
δ3(−~p2 − ~p3). (187)

Integrating over ~p3 first,

Γ =
1

2

1

(4π)2

C

m~

∫
d3~p2d

3~p3
|M |2

p2p3

δ

(
mc− E2

c
− E3

c

)
δ3(−~p2 − ~p3)

=
1

2

1

(4π)2

C

m~

∫
d3~p2
|M |2

(p2)2
δ(mc− 2p2),

(188)

where p2 and p3 are the magnitudes of the 3-momentum. Making

d3~p2 = p2
2 sinθ dp2 dθ dφ, (189)
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nd integrtting over the angles to get 4π, we obtain

Γ =
C

8π~m

∫ ∞
0

dp2 |M |2 δ(mc− 2p2)⇒ Γ =
C

16π~m
|M |2 . (190)

Note that in this case C =1/2.

When we are dealing with particles that have spin, this fact will obviously be reflected

on the invariant amplitude. Thus, we introduce the idea of an unpolarized cross section.

Most of the time, an experiment starts with a beam of particle (such as in a collider) with

spins randomly oriented, and all that we care about is spatial distribution of scattered

particles, for example. In this kind of situation, the cross section of interest is the average

of all initial spin configurations and the sum over all final spin configurations.

|M |2 → |M |2 ≡ 1

(2sA + 1)(2sB + 1)

∑
spins

|M |2

=
1

(2sA + 1)(2sB + 1)

(∑
spins

M

)
(M?) ,

(191)

where |M |2 is the unpolarized cross section and sA and sB are the spin of the particles

(in the definition above we considered inly two particles).

We now need to understand how to evaluate expressions like the definition above. We

will be dealing with terms of the form

G = [ūaM1ub][ūaM2ub]
?, (192)

where a and b label the spinors that describe different particles, each one of them with

their own value for spin and momentum, and the M ’s are 4x4 matrices. This is common

when one works in Quantum Electrodynamics, when we have reactions involving electrons

(or positrons) and photons, with gamma matrices appearing everywhere. An example

of a QED process of interest to us is the Compton scattering, of great importance on

stablishing bounds on multi-messenger searches of other observables.

First, evaluate the complex conjugate, which is the same as an Hermitian conjugate
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since the quantity inside the brackets is a 1x1 matrix,

[ūaM2ub]
? = [u†aγ

0M2ub]
† = u†bM

†
2γ

0†ua

= u†bγ
0γ0M †

2γ
0ua = ūb(γ

0M2γ
0)ua,

(193)

and we define

M̄2 = γ0M2γ
0 ⇒ G = [ūaM1ub][ūbM̄2ua]. (194)

In order to continue, we will need one result: the completeness relation for spinors. Let

u be a spinor that represents a particle, and v a spinor that represents the correponding

antiparticle; we have:

∑
s=1, 2

u(s)
p ū(s)

p = γµpµ +m = /p+m, (195)

∑
s=1, 2

v(s)
p v̄(s)

p = γµpµ −m = /p−m, (196)

where we introduced Feynman’s slash notation: whenever we have a contraction of the

form shown above, we use the “slash”. Now we perform the sum over the spins of particle

b,

∑
b spins

G = uaM1

( ∑
sb=1, 2

u
(sb)
b ū

(sb)
b

)
M̄2ua = ūaM1( /pb +mb)M2ua, (197)

and doing the same for particle a,

∑
a spins

∑
b spins

G =
∑

sa=1, 2

ū(sa)
a M1( /pb +mb)M2u

(sa)
a . (198)

This is a bit trickier. To simplify the notation, define

M3 = M1(/pb +mb)M̄2, (199)
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and we will use index notation to do the following matrix multiplication (note that i and

j range from 1 to 4):

∑
sa=1, 2

(ū(sa)
a )i(M3)ij(u

(sa)
a )j = (M3)ij

[ ∑
sa=1, 2

u(sa)
a ū(sa)

a

]
ji

= (M3)ij(/pa +ma)ji = Tr[M1(/pb +mb)M̄2(/pa +ma)],

(200)

Thus,

∑
all spins

G = Tr[M1(/pb +mb)M̄2(/pa +ma)], (201)

and all we need to do is matrix multiplication and take a trace, since there are no spinors

anymore. The relation above is known as the “Casimir trick”. Note that if we have

antiparticles spinors, the corresponding mass changes sign and becomes negative. There

are a number of theorems and results on traces, and we list them on Appendix D.

Let’s consider an example in order to use the result presented above. We will consider

a muon decay; we will not show how to obtain the amplitude since it is a Weak interaction

process, and we will see it in the next chapter. We are only interested in summing over

the spins, and according to [6],

M =
GF√

2
[ū(k)γµ(I− γ5)u(p)][ū(p′)γµ(I− γ5)v(k′)], (202)

Now, we need to perform the sum,

|M |2 =
1

2

∑
spins

|M |2=
1

2

(
GF√

2

)2∑
spin

[ū(k)γµ(I− γ5)u(p)ū(p)γν(I− γ5)u(k)]×

∑
spin

[ū(p′)γµ(I− γ5)v(k′)v̄(k′)γν(I− γ5)u(p′)],

(203)

using Casimir’s trick, we turn the sums into traces
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|M |2 =
1

2

G2
F

2
Tr[/kγµ(I− γ5)(/p−mµ)γν(I− γ5)]× Tr[/p

′γµ(I− γ5)(/k
′ −mµ)γν(I− γ5)]

=
G2
F

4
Tr[/kγµ(I− γ5)/pγ

ν(I− γ5)]× Tr[/p
′γµ(I− γ5)/k

′
γν(I− γ5)]

−mµTr[/kγµ(I− γ5)γν(I− γ5)]× Tr[/p
′γµ(I− γ5)/k

′
γν(I− γ5)],

(204)

Finally, it is worth mentioning that we can apply the definition of Mandelstam vari-

ables (Appendix A) on all the expressions we used in here, in particular to the invariant

amplitude.

3.4 VEV’s, path integrals and matrix elements

One of the most famous quantum mechanics experiments is, without a doubt, the

double slit experiment. There, we have a source emitting electrons, a screen with two

small slits and a wall afterwards, which serves as a detector. As we know, when a electron

goes though the screen with slits, it actually goes through both slits at the same time (as

long as we don’t try to measure by which slit it travelled). There is a superposition of

the paths, and we see an interference pattern on the detection wall.

We can think of it in the following way: when travelling (without being observed)

from point A to point B in space, a particle actually travels through all posiblle paths at

the same time. Once we observe it, there is a probablility associated with each path. In

the double slit case, there is a probabiblity associated with the path that goes through

the first slit, a probability associated with the path that goes through the second slit,

a non-zero (extremely small) probablity that the electron travelled all the way around

Earth and landed on the wall, and so on. Until the moment of observation, there is a

superposition of all possible paths; this is the idea behind the path integral formalism.

Consider a particle that goes from the position xA at tA to xB at tB. The transition

amplitude is given by:
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〈xB, tB | xA, tA〉 = 〈xB| eiH(tB−tA) |xA〉 . (205)

Assume that |x〉 forms a complete set of states,

∫
dx |x〉 〈x| = 1, (206)

and break the interval τ = tB − tA into N+1 intervals of equal length. We use the

completeness of states to write:

〈xB, tB | xA, tA〉 =

∫ ∞
−∞

N∏
i=1

dxi 〈xB| e−iHδt |xN〉 〈xN | e−iHδt |xN−1〉 ... 〈x1| e−iHδt |xA〉 .

(207)

with δt = T/(N + 1). Take one of the factors 〈xj+1| e−iHδt |xj〉:

〈xj+1| e−iHδt |xj〉 = 〈xj+1| e
−i

K2

2m

δt
|xj〉 . (208)

For simplicity, we will consider a Hamiltonian composed of only a kinetic part. We

could include a potential but it would make the expressions a bit more cumbersome and

it doens’t make any difference in our treatment, so we will do the calculations for the

simplest case. We will use the completeness relation again, but now for the momentum

states:

〈xj+1| e−iHδt |xj〉 = 〈xj+1| e
−i
K2

2m
δt
|xj〉 =

∫
dk 〈xj+1| e

−i
K2

2m
δt
|k〉 〈k| |xj〉 . (209)

Recall that the expression for a plane wave (in one dimension) is given by:

〈x | k〉 =
1√
2π
eikx, (210)

and we have:
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〈xj+1| e−iHδt |xj〉 =

∫
dk e

−i
k2

2m
δt
〈xj+1 | k〉 〈k | xj〉 =

∫
dk

1

2π
eik(xj+1−xj)e−iH(k,xj)δt

=

∫
dk

1

2π
e

ik(xj+1 − xj)
δt

δt
e
−i
k2

2m
δt

(211)

Note that the integral bove can be performed, it is a Gaussian integral. In addition,

if we have included a term for the potential in the Hamiltonian we would have a factor

of eiV (x) in the integrand, and the integral could still be done.

〈xj+1| e−iHδt |xj〉 =

∫
dk

1

2π
e

ik(xj+1 − xj)
δt

δt
e
−i
k2

2m
δt

=

√
−2πmi

δt
exp

[
i mδt

2

(
xj+1 − xj

δt

)2
]
.

(212)

With this result, we go back to the initial expression

〈xB, tB | xA, tA〉 =

∫ ∞
−∞

N∏
j=1

dxi

(
−2πmi

δt

)N/2
exp

(
i mδt

2

)[ N∑
j=0

(
xj+1 − xj

δt

)2
]
, (213)

and take the limit when δt → 0 (note that’s equivalent ot make infinitesimal intervals

with N →∞), which makes

xj+1 − xj
δt

→ ẋ, (214)

and the sum
∑N

j=1 δt becomes an integral over time. This yelds

〈xB, tB | xA, tA〉 =

∫
Dx exp

(
i

∫ T

0

dt
1

2
mẋ2

)
, (215)

where we defined,
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∫
Dx = lim

N→∞
lim
δt→0

(
−2πmi

δt

)N/2 N∏
j=1

∫
dxj. (216)

If we had a spatially dependent potential, we would have

〈xB, tB | xA, tA〉 =

∫
Dx exp

(
i

∫ T

0

dt
1

2
mẋ2 − V (x)

)
, (217)

and we recognize the Lagrangian, and its integral, the action:

〈xB, tB | xA, tA〉 =

∫
Dx exp

(
i

∫ T

0

dtL

)
=

∫
Dx eiS. (218)

The equation above clearly states that given an initial and a final configuration, any

path that connects them is allowed and must be taken into account; that’s the Dx term.

Now, the weight of each path is given by the exponential of the action along that path.

Our next step is to see how different paths contribute to the end result of the calculation.

The standard way of doing this is by performing a Wick’s rotation in time:

t→ it⇒ dt→ idt, (219)

and this affects the action,

S =

∫
dtL→ i

∫
dtL = iS. (220)

Therefore, our exponential becomes

〈xB, tB | xA, tA〉 =

∫
Dx e−S. (221)

Now suppose that we have a path that deviates from x0 in the following way:

x′ = x0 + δx, (222)

which has a statistical weight
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eS
′
= e

−S(x0)−
δS

δx0

δx

(223)

the path is favored if
δS

δx0

is small. The minimum happens at:

δS

δx0

= 0, (224)

which is just the path of least action. This has a curious consequence: the classical result

is the nothing but the most probable quantum paths.

For a single particle system, quantum mechanics rules. However, as we start adding

particles to form a macroscopic object, in order to see a quantum mechanical effect, we

would need 1023 particles far from the least action possibility, and the chance that this

happens is extremely small. In that sense, that’s macroscopic phenomena are dominated

by classical mechanics.

The natural extension to what we just did is to consider the expectation values of

operators acting on states. In order to do that, we introduce a few new concepts. The

functional derivative of f(x) is defined as

δ

δf(y)
f(x) = δ(x− y). (225)

Now, suppose that we want to calculate the expectation value of the operator X(t).

To do so, we will use the functional derivative and a modified Lagrangian by the addition

of an auxiliary function,

L → L+ f(t)X(t), (226)

which gives

〈xB, tB | xA, tA〉f =

∫
Dx exp

(
i

∫
dtL+ fX

)
. (227)

The ”trick” here is to take a functional derivative and evaluate it at f = 0:
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〈xB, tB | X | xA, tA〉 =
1

i

δ

δf
〈xB, tB | xA, tA〉f

∣∣∣
f=0

=

∫
Dx X exp

(
i

∫
dtL+ fX

)∣∣∣
f=0

=

∫
Dx X eiS.

(228)

As mentioned before, the idea of Quantum Field Theory is to build particles by defin-

ing particle operators that act on the vacuum. Therefore, we are particularly interested in

the vacuum to vacuum expectation value (VEV), 〈0 | 0〉 and the VEV for field operators,

such as 〈0 | φ | 0〉, for instance.

To start, let L be a given Lagrangian. Then we can write

〈0 | 0〉 =

∫
Dφ exp

[
i

∫
d4xL

]
≡ Z0. (229)

In order to calculate VEV’s, we introduce an auxiliary field J,

〈0 | 0〉J =

∫
Dφ exp

[
i

∫
d4xL+ Jφ

]
≡ Z(J). (230)

Let’s say we are interested in calculating 〈0 | φ | 0〉. We can make use of 〈0 | 0〉J and the

definition of functional derivative. Note that:

〈0 | φ | 0〉 = 〈0 | φ | 0〉J
∣∣∣
J=0

=

(∫
Dφ φ ei

∫
d4xL+Jφ

)∣∣∣
J=0

=
δ

δJ

(∫
Dφ ei

∫
d4xL+Jφ

)∣∣∣
J=0

=
δ

δJ
Z(J)

∣∣∣
J=0

(231)

So the expectation values can be obtained by taking functional derivatives of a known

VEV. If we have multiple fields in the Lagrangian, we just add as many auxiliary terms

(J, Q, R and so on) and take the necessary functional derivatives.

3.5 Quantum Electrodynamics

In this section we will present a quick, heuristic derivation of the Feynman rules for

Quantum Electrodynamics, as a generalization of the ideas presented before. We will
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mostly follow [6] in addition to [11] here. [10] has a very comprehensive explanation on

this.

If we look at the perturbative calculation of the transition amplitude through the use

of the Dyson series, we have

Tfi = −2πiδ(Ef − Ei)

(
Vfi +

∑
n6=i

VfnVni
Ei − En

)
+ ... , (232)

which looks like

Tfi = −2πiδ(Ef − Ei)

(
〈f | V | i〉+

∑
n6=i

〈f | V | n〉 1

Ei − En
〈n | V | i〉

)
+ ... . (233)

Now let’s take a look on the structure of this equation. We are calculating an amplitude,

a transition amplitude between two given states. Since the potential contains all the

information about the interaction, we can think of its matrix elements as a vertex for

the inetraction between two states, and note that the first order term only contains one

vertex. When we look at the second order term we have two vertexes, and there is a

term,

1

Ei − En
, (234)

which can be thought as the internal line connecting the two vertexes, the propagators.

In addition, the sum takes into account all possible configurations that contribute to the

amplitude. Thus, we can make an association between this perturbative expression and

the Feynamn rules we presented on the previous seection; all thatwe need is to make the

necessary generalizations to apply these rules for Quantum Electrodynamics. Let’s look

at the propagator in more detail. Following [6],

Tfi = 2πiδ(Ef − Ei) 〈f | (−iV ) + (−iV )
i

Ei −H0

(−iV ) + ... | i〉 , (235)

where the completeness relation for the states was used. From the equation above, we
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can take (−iV ) to be the parameter used in the perturbation expansion. This will be our

vertex, for the reasons discussed on the paragraph above. Also, the propagator will be

the inverse of the Schrodinger operator,

−i(Ei −H0)ψ = −iV ψ. (236)

Now that we have unravelled the structure, we can make the generalizations. For a

system that obeys the Klein-Gordon equation, the propagator is the inverse of

i(�2 +m2)φ = −iV φ⇒ 1

i(−p2 +m2)
=

i

p2 +m2
, (237)

is the propagator, where p is the momentum of the intermediate state.

For an electron moving in an electric field, we have the Dirac equation and a term

that depends on the vector potential of the electric field,

(/p−me)ψ = eγµAµψ, (238)

where we have introduced Feynman’s slash notation:

γµaµ = /a. (239)

Multiplying bi (−i),

−i(/p−me)ψ = eγµAµψ = −ieγµAµψ, (240)

and we take −ieγµ to be the vertex. Following the same ideas, the propagator of the

elctron is

1

−i(/p−me)
=

i

/p−me

. (241)

Using the fact that /p/p = p2,
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i

/p−me

=
i(/p+me)

p2 −m2
e

, (242)

and inserting the completeness relation obtained from summing over all the spins of the

virtual electron.

i(/p+me)

p2 −m2
e

=
i

p2 −m2
e

∑
spins

uū. (243)

Thus, for a virtual massive particle,

i

p2 −m2

∑
spins

. (244)

For the photon propagator, the situation is more complicated due to the gauge freedom

of Aµ. It can be shown [6] that if one works in the Lorentz gauge,

−igµν
q2

, (245)

where

gανg
νβ = δβα, (246)

δβα is the Kronecker delta, and qµ is the photon’s 4-momentum, qµε
µ = 0(scalar product

with the polarization). For a photon propagating on the z-axis,

ε1 = (1, 0, 0), ε2 = (0, 1, 0). (247)

Finally, for a massive spin-1 particle with wavefunction ψλ, one obtains

[gαβ(�2 +M2)− ∂α∂β]ψβ = 0⇒ −ig
µν + ipµpν/M2

p2 −M2
. (248)

Our next step is to present the rules. We write them as tables with the particle types

and their contributions to the amplitude.

I) Multiplicative factors
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Vertexes

Vertex type Factor

Photon - spin 0 (charge e) −ie(p+ p′)µ

Photon - spin 1/2 (charge e) −ieγµ

External lines

Particle type Ingoing Outgoing

Spin 0 boson/antiboson 1 1

Spin 1/2 fermion u ū

Spin 1/2 antifermion v̄ v

Spin 1 photon εµ ε?µ

Internal lines (propagators)

Particle type Factor

Spin 0 boson
i

p2 −m2

Spin 1/2 fermion
i(/p+m)

p2 −m2

Massive spin 1 boson
−i(gµν − pµpν/M2)

p2 −M2

Massless spin 1 boson on the Feynman gauge
−igµν
p2
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II) For each vertex, write a delta function

(2π)4δ4(k1 + k2 − k3), (249)

where the ki’s are the 4-momenta for the particles lines that connect at the vertex.

Lines going into the vertex (in our example, k1 and k2) get a positive sign, while

particles going out get a negative sign (k3). The purpose of this term is to ensure

conservation of energy and moementum at the vertex.

III) Perform an integral over all the internal momenta (the ones that appear into the

propagator)

∫
d4q

(2π)4
. (250)

IV) At this point, we should have a delta function of the form

(2π)4δ4(p1 + p2 + ...− pn), (251)

eliminate this factor and what is left in the expression is the inavriant amplitude

−iM.

V) Repeat these steps for very possible diagram, performing antisymmetrization when

necessary: whenever two diagrams differ only by the interchange of two incoming

(or outgoing) electrons (or positrons) or if they differ by the interchange of an

incoming electron with an outgoing positron (or vice versa) we include a minus sign

between the dagrams.

Those rules apply to the first oder, or “tree level”.

In order to apply these rules, we will consider the Compton scattering, which involves

an electron and a photon. For astrophysics, the inverse Compton scattering is of particular

importance (we will mention this in later chapters). Note that the only difference between

the Compton and the inverse Compton scattering is the energy of the electron: in the
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inverse process the energy of the electron is comparable to the energy of the photon, and

unlike the usual Compton scattering, energy can be transferred to the photon. Thus, the

diagrams are the same for both situations [10].

At tree level, we have two diagrams for the Compton scattering,

Figure 2: Feynman diagrams at tree level for the Compton scattering.

where p is used for the electron and k is used for the photon.

Let’s apply the rules for the diagrams. First the multiplicatives factors for the first

diagram, together with the delta functions for each vertex,

[ū(p′)(−ieγµ)ε?µ(k′)]

[
i(/q +m)

q2 −m2

]
[(−ieγν)εν(k)u(p)](2π)8δ4(kµ+pµ−(p+k)µ)δ4(k′µ+(p+k)µ−p′µ),

(252)

Now, we need to inetgrate pver the internal momenta, and eliminate the delta function

that will be left. Doing this for the other diagram as well, we get (for the two diagrams)

iM = [ū(p′)(−ieγµ)ε?µ(k′)]

[
i(/p+ /k +m)

(p+ k)2 −m2

]
[(−ieγν)εν(k)u(p)]

+ ū(p′)(−ieγν)
[
εν(k)

i(/p− /k +m)

(p− k′)2 −m2

]
(−ieγµε?µ(k′)u(p))

= −ie2ε?µ(k′)ε(k′)εν(k)ū(p′)

[
γµ(/p+ /k +m)γν

(p+ k)2 −m2
+
γν(/p− /k +m)γµ

(p− k′)−m2)

]
u(p).

(253)

Note that we don’t need to apply antisymmetrization, and the amplitudes will add.
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Finally, to compute the amplitude, one needs to calculate

|M1 + M2 |2=|M1 |2 + |M2 |2 +M1M
?
2 + M2M

?
1. (254)

3.6 A comment on renormalization

Historically speaking, the first use of renormalization was done by Hans bethe, in 1947.

In that time, there was a problem known as the Lamb shift, the energy gap between the

2s and 2p levels of the Hydrogen atom. The experimental value was well known and

measured but all calculations (even including Dirac’s theory) lead to divergencies. In

[43], Bethe was able to obtain a finite result.

Renormalization was initially employed in a perturbative way. However, it was with

Wilson’s work on continuous phase transitions [74] that the renormalization group for-

malism was presented, and a better understanding of renormalization was obtained; it is

a problem not only restricted to particle physics. Put simply, during phase transitions

the correlation length of a physical system becomes infinite, since the system becomes

invariant under rescaling. Thus, the system loses its typical length scale. It turns out

that the renormalization group becomes the ideal formalism to treat these scenarios.

In particle physics, the “running of the coupling” and the β-function are the terms

usually employed. The idea is that if one assumes a certain scale R for the theory,

any other scale can be acessed, thus defining a group action. Let R be a dimensionless

observable [6]:

R = R
(
α,

s

Λ2

)
, (255)

with s being a scale, and with α as the elctromagnetic coupling,

α =
e2

4π
, (256)

m is mass and Λ is cutoff we introduce to regularize a divergence (for example, instead

of integrating from zero to infinity and getting a divergence, one integrates from 0 to Λ).
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We have the renormalization group equation,

Λ2 dR

dΛ2
⇒ Λ2 ∂R

∂Λ2
+ Λ2 ∂α

∂Λ2

∂R

∂α
= 0. (257)

As we can see, R can depend on Λ directly or through the coupling parameter α. We can

define a new variable,

t = ln(s/Λ2), (258)

(
− ∂

∂t
+ β

∂

∂α

)
R
(
α(s),

s

Λ2

)
= 0, β = Λ2 ∂α

∂Λ2
=
∂α

∂t
. (259)

If we make the identification Λ2 = s, the equation becomes

R(α(s), 1). (260)

The “running of the coupling” is described by the β function, which can be calculated

pertutbatively. We will apply these results directly when we discuss physics beyond the

Standard Model.
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4 Electroweak Physics

4.1 Super selection rules, CPT and violations

4.1.1 Super selection rules

Suppose that, in a given theory, the states that describe a physical system belong

to a Hilbert space. One can ask the follwoing question: if every state lies in a Hilbert

space, does every element of the Hilbert space corresponde to a physical state? No, this

statement does not necessarily hold true.

In order to make the point of the last paragraph clear, look for example at electric

charge. There is no physical system we know that is defined by a superposition of states

with different charges. This is not the same situation as usual conservation laws, like

energy or selection rules from angular momentum conservation. One can find states

which are not eigenstates of a certain component of angular momentum J , say Jx, but

are eigenstates of Jz. On the other hand, it seems that every physical system must be an

eigenstate of a charge operator, which we shall name Q.

This notion can be also extended to the baryon number, B, and (−1)F where F is an

even integer when the state has an integer spin and an odd integer when the state has an

odd integer spin. These operators are conserved in time. Any rule that sets some states

as physically unrealizable is called a super selection rule.

The consequence of this in a theory with super selection rules is that not every Her-

mitian operator is an observable, and that the superposition principle only holds within

a subspace of a Hilbert space, the one allowed by these operators. They are called the

charge, baryon and univalence superselection rules.
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4.1.2 The CPT theorem

However, as we know, a theory can contain many other symmetries in addition to the

super selection rules. The ones taht are of particular interest to quantum field theory

(and us) are usually called “CPT”. We will begin our discussion of them, starting with

the charge conjugation operator, Ĉ.

Consider the transformation

ψ → Cψ̄T , ψ̄ = ψ†γ0, (261)

where C is the matrix given by

C =



0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0


=

 −(iσ2) 0

0 iσ2



.

It can be shown by direct inspection that if ψ is a solution to the Dirac equation for a

particle with charge q, Cψ̄T is a solution for the Dirac equation for a particle with charge

−q. The terms ±iσ2 stablish a connection between left-handed and right-handed spinors.

In the context of the Lorentz group, the (1/2, 0) is the left-handed spinor representation,

and the (0, 1/2) is the right-handed spinor representation. We write those spinors as ψL

and ψR respectively.

Now, if we use the following mapping,

ψL → ψ′L = iσ2ψ?L, (262)

one can check how ψ′L transforms under rotations and boots. Under rotations, ψL and

ψ′L transform in the same, but under boosts:

ψ′L → ψ′L = iσ2(eiθ.σ/2ψL)? = iσ2(e−iθ.σ/2I)ψ?L, (263)
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use

I = (−iσ2)(−iσ2), (264)

ψ′L = iσ2(e−iθ.σ/2(−iσ2)(−iσ2))ψ?L, (265)

now apply

(iσ2)σ?(−iσ2), (266)

to get

ψ′L = eiθ.σ/2(iσ2)ψ?L = eiθ.σ/2ψ′L, (267)

which is the transformation law for the right-handed spinor. Therefore, the mapping that

we defined via the use of iσ2 together with the complex conjugation maps left-handed

spinors into right-handed ones. One can define an inverse mapping as well,

ψL = −iσ2ψ?R, (268)

transforms as a left-handed spinor.

Let α and β denote two left handed fields. In the chiral representation, we can write

a spinor as

ψ =

 ψL

ψR

 =

 α

(iσ2)β?

 ,

showing all components explicitly,
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α =

 α1

α2

 , β =

 β1

β2

⇒ ψ =



α1

α2 0 1

−1 0


 β?1

β?2




=



α1

α2

β?2

−β?1


where we used the fact that we write a right handed field in terms of a left handed field

through the use of the mapping

λ→ λ′ = (iσ2)λ?, (269)

where we have the Pauli matrix σ2, λ′ is a right handed field and λ is a left handed one.

Writing ψ̄,

ψ̄ = ψ†γ0 = (α?1 α2 β2 − β1)



0 0 0 1

0 0 0 1

1 0 0 0

0 1 0 0


= (β2 − β1 α?1 α?2).

Note that after this operation, we are left with a row spinor. In order to make it a

collumn spinor, after we take the transpose,

ψ̄T =



β2

β1

α?1

α?2


=

 (iσ2)β

α?

 .

This is not a spinor yet; notice that we a missing a factor of iσ2 between the top and

bottom components, and to fix it we use the matrix C,
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Cψ̄T =

 −(iσ2) 0

0 iσ2

 ψ̄T =

 −(iσ2) 0

0 iσ2


 (iσ2)β

α?

 =

 β

(iσ2)α?


. This is now a spinor with a left handed Weyl field on top and a right Weyl field on the

bottom, as desired.

We now turn our attention to the parity transformation. By definition, the parity op-

erator is responsible for performing a spatial inversion. Consider, for instance, a quantum

mechanical wave function,

ψ(~x, t)→ ψ′(~x, t) = P̂ ψ(~x, t) = ψ(−~x, t), (270)

If we apply the operator twice, the wave function returns to its original state, which

implies

P̂ P̂ = I⇒ P̂ = P̂−1. (271)

We also have a constraint from the normalization of the wavefunction,

〈ψ | ψ〉 = 〈ψ′ | ψ′〉 = 〈ψ | P †P | ψ〉 ⇒ P †P = I. (272)

This condition, together with the fact that P̂ is its own inverse, implies that the Parity

operator is Hermitian. Note that it also agrees with the super selection rules, therefore,

it is an observable.

Let’s now see look closer at the relation of parity operators and bosons and fermions.

First, if the parity operator commutes with the Hamiltonian, it is an observable conserved

quantity. Secondly, we can find the eigenvalues of the parity operator.

ψ = P̂ P̂ψ = P̂ λψ = λ2ψ ⇒ λ2 = 1⇒ λ = ±1. (273)

From Gauge Theory, it can be shown that the gauge bosons have parity eigenvalue equal
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to −1. For spin half fermions, the particles have opposie parity to their correpondent

antiparticles. The convention we adopt is the usual one, where particles have parity +1.

In particular, for spinors that satisfy Dirac’s equation,

P̂ = γ0 =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


,

Finally, T is related to the time reversal symmetry. We are now ready to briefly

introduce the CPT theorem, a very famous result of axiomatic field theory. We will not

try to be very rigorous or give a proof of it (for a great detailed explanation, see [18]),

and we will focus on its physical interpretations.

Theorem

If the following conditions are satisfied,

I) The theory is local, characterized by Lagrangian which is Hermitian and invariant

under proper Lorentz transformations,

II) The quantization scheme uses commutators for integer spin (bosons) and anticom-

mutators for half-integer,

then the Hamiltonian for the Theory is invariant under CPT :

(CPT ) H (CPT )−1 = H(x′). (274)

as stated on [22].

We can interpret this theorem as a statement that it is possible to construct a mirror

image of our Universe. The charge conjugation takes matter into antimatter (C), parity

reflects the positions (P) and the momenta of the particles is reversed through time

reversal (T). It is important to mention that there is a close connection between the CPT
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theorem and the Spin-Statistics theorem; in fact, CPT can be used in the proof of the

theorem that clearly states the fundamental difference between bosons and fermions.

4.1.3 Violations

CPT can be regarded as a fundamental symmetry of Nature. However, it does not

mean that violations of, for example, parity are not allowed; there exist physical phe-

nomena that violate P and CP (but not CPT ).

The weak interaction does not conserve parity, and this has been experimentally

verified (in 1957 C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson

found a clear violation of parity conservation in the beta decay of cobalt-60 [49]). The

Standard Model takes that into account by describing the weak interaction as a chiral

gauge interaction, where only the left-handed portion of particle spinors and right handed

portion of antiparticle spinors take part into the interactions. We will not get into further

detail here, as this topic will be discussed in the next section, when we discuss electroweak

physics.

The weak interaction also violates the product of charge conjugation and parity, CP ,

in some weak decays. But CP violation is described and implemented in a more subtle

way than parity violation. It appears in the form of a complex phases in matrices that

describe flaour mixing in quarks an leptons (this will be directly adressed in the elctroweak

section as well). Examples are the PMNS matrix for neutrino mixing and the CKM matrix

for quark mixing. (CP violation has also been experimentally observed [50]).

4.2 Weak currents

Historically, the motivation for the study of weak currents come from some very

famous particle reactions. To name a few, we have the β decay of nuclei in atoms, the

neutron decay and muonless neutrino induced events. We will mainly follow [6] here,

with additional details added as necessary.

We start by writing the parity violating process known as the charge raising weak

current [51]:
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Jµ = ūνγ
µ1

2

(
I− γ5

)
ue, (275)

where the combination of the terms γµ and γ5γµ ensures the parity violation, and u

denotes a usual spinor,

u =

 uL

uR

 ,

with the subscript being used to label the particle described by the spinor.

We can also obtain the charge lowering weak current by taking the Hermitian conju-

gate of the expression above,

Jµ† =

[
ūνγ

µ1

2

(
I− γ5

)
ue

]†
. (276)

Recall that

(AB)† = B†A†, (277)

and we get

Jµ† =

[
u†νγ

0γµ
1

2
(I− γ5)ue

]†
= u†eγ

0γ0 1

2
(I− γ5)γµ†γ0uν

= ūeγ
0 1

2
(I− γ5)γ0γµuν = ūeγ

µ1

2
(I− γ5)γ0γµuν .

(278)

Finally,

Jµ† = ūeγ
µ1

2
(I− γ5)uν . (279)

Our next goal is to find an expression for the interaction amplitude. Clearly, we need

to conserve charge; therefore, the charge-raising and the charge-lowering operations must

appear as a combination. The simplest guess would be a dependence of the form
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M α JµJ†µ, (280)

and we introduce a proportionality constant

M =
4GF√

2
JµJ†µ. (281)

The number 4 comes from the normalization with respect to (I− γ5)/2, while the
√

2 is

matter of convenienece and historical purposes, as we want to keep the constant GF in

the same way Fermi originally did when he first studied these physical processess.

Now we list the lepton pairs coupled by the charge-raising weak current (following

the notation of [6] the first particle of the pair is an ingoing particle and the second an

outgoing one):

I) (e−L , νL),

II) (ν̄R, e
+
R),

III) (0, νLe
+
R),

IV) (e−L ν̄R, 0),

where e+
R denotes a right-handed positron and ν̄R a right-handed antineutrino. In ad-

dition, we have a few comments to make here. First of all, we mention the parti-

cle/antiparticle relation: the spinor component of a right-handed antiparticle and the

spinor component of a left-handed particle with negative energy are related to each other,

with the projection operator of the right-handed particle being (I− γ5)/2.

Secondly, we look at C, P and CP transformations. Experimentally (as far as we have

seen), we do not detect the states ν̄L and νR which is a violation of parity invariance. In

addition, there is violation of the charge conjugation C, which takes νL into ν̄L. However,

the CP invariance exists, and we will discuss this topic more in the next topic.

Finally, we present the experimental value for GF ,

GF = 1.1× 10−5GeV−2. (282)
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It is important to mention that there is a small change, of a few percent, when GF is

measured in different physical events, such as the β decay and the muon decay, and we

adress this later.

Now we turn ourselves into the problem of studying quark weak currents. The practi-

cal importance of this for neutrino astronomony is that we will then be able to calculate

and predict neutrino-quark cross sections, which are crucial interactions for the IceCube

detector and will be adressed on chapter 9. In the spirit of the lepton weak charge-raising

current, we write

Jµq = ūuγ
µ1

2
(I− γ5)ud, (283)

with the charge-lowering current being given by the Hermitian conjugate of the expression

above.

Figure 3: Charged Current (CC)

From the diagram,

(
g√
2
Jµ

)
1

mW

(
g√
2
Jµ†
)

=
4GF√

2
JµJ

µ†. (284)

The invariant amplitude is given by

M =
4GF√

2
JµJ

µ†, (285)

as well. The short range of the interaction exists due to exchange of a heavy gauge

boson, of mass mW . The expression above is the invariant amplitude for charged current

neutrino-quark cattering, usually refered to as CC interaction. Note that this holds true

for free u and d quarks, but they are bound (as in the pion) and therefore corrections
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will be necessary when one studies reactions such as pion decay.

A remarkable discovery changed particle physics: neutrino induced muonless events

[53]. The reason why they are so important is taht they are not explained by CC in-

teractions, but by Neutral Charge interactions (NC). Those events can be interpreted

as

νµ(ν̄) + Nucleus→ νµ(ν̄) + Hadrons, (286)

with

JNCµ (ν) =
1

2

(
ūµγ

µ1

2
(I− γ5)uν

)
, (287)

JNCµ (q) =

(
ūqγ

µ1

2
(cqV I− c

q
Aγ

5)uq

)
, (288)

where

cfV = T 3
f − 2sin2θwQf , c

f
A = T 3

f . (289)

T 3
f and Qf are available in the table from the Standard Model section. This is not a pure

V-A current, since cV 6= cA. Note that the neutral current interaction has a coupling

g/cosθw.

4.3 Neutrino flavor mixing

One can now try to extend the idea of “rotation of states” to other problems. A very

famous one in the recent years was related to neutrino oscillations, which resulted The

Nobel Prize in Physics of 2015 being awarded jointly to Takaaki Kajita and Arthur B.

McDonald “for the discovery of neutrino oscillations, which shows that neutrinos have

mass”. Experiments provided evidence that (time dependent) oscillatory transitions of

the form
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να 
 νβ, (290)

between the different neutrino flavors exist. The data from all the experiments conducted

in this area suggest that the neutrino eigenstates that travel through space are the mass

eigenstates, and not the weak force flavor eigenstates.

The flavor and mass eigenstates are related by a unitary matrix. We will label the

flabor eigenstates woth latin letters (i = 1, 2, 3), and the flavor eigenstates with greek

letters (α = e, µ, τ)

|να〉 =
∑
i

Uαn |νn〉 , (291)

which has the inverse

|νn〉 =
∑
α

(U †)nα |να〉 =
∑
α

U?
αn |να〉 . (292)

For antineutrinos, it is necessary to make the replacement

|ν̄α〉 =
∑
n

U?
αn |ν̄n〉 . (293)

Note that

U †U = I, (294)

which means in terms of matrix elements

∑
n

UαnU
?
βn = δαβ,

∑
α

UαmU
?
αn = δmn. (295)

Now let’s see what’s the relation between those two sets of eigenstates as time evolves.

For the mass eigenstates we can write

|νn(t)〉 = e−iEnt |νn〉 . (296)
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Thus, for a given time t, a flavor eigenstate is given in terms of a mass eigenstate by

|να(t)〉 =
∑
n

Uαne
−iEnt |νn〉 =

∑
n

Uαne
−iEnt |νn〉 =

∑
n

∑
β

UαnU
?
βne
−iEnt |νβ〉 . (297)

Calculating the scalar product to get the transition amplitude,

〈νβ | να(t)〉 =
∑
n

= UαnU
?
βne
−iEnt, (298)

At this point, we will try to manipulate the equatioon above a bit, by using the fact that

the neutrino is nearly massless.

p >> m→ En =
√
p2 +M2

n = p

√
1 +

(
Mn

p

)2

≈ p+
M2

n

2p
. (299)

Using E ≈ p,

En ≈ E +
M2

n

2E
, (300)

where M is the neutino mass. We now have the following expression for the amplitude

〈νβ | να(t)〉 = e−iEt
∑
n

= UαnU
?
βne
−
iM2

nt

2E → 〈νβ | να(t)〉 =
∑
n

= UαnU
?
βne
−
iM2

nt

2E ,

(301)

where we eliminate the global phase factor since it does not contribute to the transition

probability. Replace

t =
L

c
⇒ t = L (c = 1)⇒ 〈νβ | να(t)〉 =

∑
n

UαnU
?
βne
−
iM2

nL

2E , (302)

where L is the distance travelled by the neutrino from its origin to its detection. Finally,

for an arbitrary chosen fixed m, we get
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eiEmt 〈νβ | να(t)〉 =
∑
n

UαnU
?
βne
−i(En−Em)t ⇒ δαβ +

∑
n6=m

UαnU
?
βn[e−i∆nm − 1], (303)

∆nm = (En − Em) = 1.27
δM2

nmL

E
. (304)

The units used here are eV2 for the mass difference squared and km for L. Given exper-

imental evidence, there is strong evidence that | Ue3 |2<< 1 [54] , and we can make an

approximation by neglecting its contribution as follows. We can can define a mass basis

as

|ν1〉 = sinθ� |ν?〉+ cosθ� |νe〉 , (305)

|ν2〉 = −sinθ� |νe〉+ cosθ� |ν?〉 , (306)

|ν3〉 =
1√
2

(|νµ〉+ |ντ 〉), (307)

|ν?〉 =
1√
2

(|νµ〉 − |ντ 〉), (308)

with θ� being the solar mixing angle. The analysis of KamLAND and solar neutrino data

show agreement up to 3σ CL [55],

tan2θ� = 0.39+0.05
−0.04. (309)

The idea is that the mass eigenstates and the flavor eigenstates are connected by a

mixing matrix, which describes an unitary operator.

|να〉 =
∑
i

Uαi |νi〉 , (310)

where the greek letter indicates a flavor eigenstate and the latin letter a mass eigenstate.
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Since U is unitary,

|νi〉 =
∑
α

(U †)iα |να〉 =
∑
α

U?
αi |να〉 . (311)

For antineutrinos,

|ν̄α〉 =
∑
i

U?
αi |ν̄i〉 . (312)

4.4 Parity violation and helicity

We will mostly flollow the approach presented on [6], [56] in this topic. Consider, for

example, a current of the following form (apart from constants)

jµV = ūfγ
µui, (313)

which commonly appears in QED for two states, initial and final. The reason for the

subscript V will be explained soon. Now, if we apply a parity transformation,

ui → u′i = P̂ ui = γ0ui, (314)

ūf = u†fγ
0 → ū′f = (P̂ uf )

†γ0 = u†fγ
0†γ0 = u†fγ

0γ0 = ūfγ
0. (315)

Therefore, the current transforms as

jµV = ūfγ
µui → j′µ = ū′fγ

µu′i = ūfγ
0γµγ0ui. (316)

Now, we use some properties of the gamma matrices. For µ = 0,

γ0γ0 = I⇒ j′0V = ūfγ
0γ0γ0ui = j0, (317)

and for µ 6= 0, µ = m = 1, 2, 3,
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γ0γm = −γmγ0, m = 1, 2, 3→ j′m = ūfγ
0γmγ0ui

= −ūfγmγ0γ0ui = −ūfγmui = −jm.
(318)

The time component does not change sign, but the spatial part does. If one considers the

scalar product of the current (recall that matrix elements are proportional to this scalar

product),

ηµνj
µjν = j0j0 − jmjm, (319)

under a parity transformation,

ηµνj
′µj′ν = j0j0 − (−jm)(−jm) = ηµνj

µjν , (320)

it remains unchanged. Thus, QED is parity invariant. QCD has similar vertex structure,

and is parity invariant as well.

Now, we look at Weak currents. They have the form (ignoring constants)

Jµ = ūfγ
µ(I− γ5)ui, (321)

which is referred to as a V-A structure. The reason for this term lies in the fact that the

equation above is a combination of a vector current and an axial vector current, the most

general expression for the exchange of a spin-1 particle. In addition, a vector changes

sign under a parity transformation, while an axial vector does not.

From the example we just showed above, we saw that QED and QCD are vector

interactions, from the way their current change. What we will do now is study the

behavior of the extra term that contais γ5,

jµA = ūfγ
µγ5ui. (322)

Let’s see how this term transforms under parity.
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γ5 = iγ0γ1γ2γ3, γ5γ0 = −γ0γ5 ⇒ jµA → j′µA = ūfγ
0γµγ5γ0ui = −ūfγ0γµγ0γ5ui. (323)

Our next step is the same as when studied vector currents, we look at the components of

the current. For the zeroth component,

j′0A = −ūfγ0γ0γ0γ5ui = −ūfγ0γ5ui = −j0
A, (324)

For µ 6= 0, m = 1, 2, 3:

jmA = −ūfγ0γmγ0γ5ui = ūfγ
mγ5ui = jmA , (325)

This is the opposite of the vector current; the time component changes sign, but the

spatial part does not. If we look at the scalar product,

ηµνj
′µ
A j
′ν
A = ηµνj

µ
Aj

ν
A, (326)

it remains unchanged as well. The conclusion is: pure vector and pure axial currents

preserve parity. Now, let’s see what happens when we have a linear combination of them,

Jµ = gV j
µ
V + gAj

µ
A, (327)

Figure 4: Weak interaction

Jµ1 = ū1,f (gV γ
µ + gAγ

µγ5)u1,i ≡ gV j
µ
1,V + gAj

µ
1,A, (328)
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Jµ2 = ū2,f (gV γ
µ + gAγ

µγ5)u2,i ≡ gV j
µ
2,V + gAj

µ
2,A, (329)

gµν
q2 −m2

, (330)

and this gives

Jµ1 J2µ = g2
A

(
jµ1,Ajµ2,A

)
+ g2

V

(
jµ1,V jµ2,V

)
+ gV gA

(
jµ1,V jµ2,A + jµ1,Ajµ2,V

)
. (331)

Under a parity transformation, the pure vector and axial terms remain unchanged, but

the cross term

gV gA
(
jµ1,V jµ2,A + jµ1,Ajµ2,V

)
→ −gV gA

(
jµ1,V jµ2,A + jµ1,Ajµ2,V

)
, (332)

changes sign. The scalar product of this current does not remain unchanged, and there-

fore, parity is not conserved. The cross term only vanishes if

gV gA = 0⇒ gV = 0 or gA = 0, (333)

which is a restatament that parity is conserved by pure vector or pure axial currents.

Note that the ratio

f =
gV gA
g2
A + g2

V

, (334)

is an indicative of the relative strength of the parity violating term and the parity pre-

serving portion.

With that said, we turn to the helicity analysis of the Weak interaction, which plays

a crucial role in pion decay, for instance, which is a process of great interest to us due to

astrophysical neutrino production. If we use projection operators in the Chiral represen-

tation, the operator defined by (1−γ5)/2 gives a left-handed projection, while (1 +γ5)/2
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a right-handed projection) we can decompose the spinor as a sum of a right handed and

a left handed spinor. In addition, from the study of the solutions of the Dirac equation,

chiral states are associated to helicity states. If we apply this for a spinor in a QED

vertex,

u = uL + uR ⇒ ūfγ
µui = ūL,fγ

µuL,i + ūR,fγ
µuR,i + ūL,fγ

µuR,i + ūR,fγ
µuL,i, (335)

and looking at cross terms,

ūL,fγ
µuR,i =

1

2
u†f (1− γ

5)γ0γµ
1

2
(1 + γ5)ui =

1

4
u†f (γ

0 − γ5γ0)γµ(1 + γ5)ui

=
1

4
u†f (γ

0 + γ0γ5)γµ(1 + γ5)ui =
1

4
u†fγ

0(1 + γ5)γµ(1 + γ5)ui

=
1

4
u†fγ

0(γµ + γ5γµ)(1 + γ5)ui,

(336)

we will use

{γ5, γ0} = γ5γ0 + γ0γ5 = 0, (337)

and that gives

ūL,fγ
µuR,i =

1

4
u†fγ

0(γµ − γµγ5)(1 + γ5)ui

=
1

4
u†fγ

0γµ(1− γ5)(1 + γ5)ui =
1

4
u†fγ

0γµ(1− 1)ui = 0,

(338)

since (γ5)2 = 1. The cross terms both vanish, and only two terms remain, ones with one

left-handed and right-handed portions.

We can try to do the same for a Weak vertex. The vertex for the CC interaction is

−igW
2
√

2
γµ(1− γ5) =

−igW√
2
γµP−, (339)

where P− is a left-handed projection operator. Thus,
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ūf
−igW√

2
γµP−ui = ūf

−igW√
2
uL,i = (ūL,f + ūR,f )

−igW√
2
γµuL,i =

(
−igW√

2

)
ūL,fγ

µuL,i.

(340)

As we see, since the vertex depends on the left-handed chiral projection operator, the

interaction vertex ends up selecting a portion of the spinor. For particles, only the left-

handed chiral components of particle spinors (and the right-handed for antiparticles) take

part in CC interactions.

It is important o check some energy regimes. From our studies of solutions of the

Dirac equations, when we look at the high energy limit, where the energy of the paricle

is much bigger then its mass, the helicity eigenstates are the left-handed chiral compo-

nents. Helicity +1 is associated with left-handed particles, and −1 with right-handed

antiparticles, and only these elements participate in CC interactions in this energy limit.

4.5 The Glashow resonance

Consider the following process:

ν̄e + e− → W−, (341)

which is usually referred to as the Glashow resonance [24]. There are other similar

reactions for each neutrino and antineutrino flavor

νl + l+ → W+, (342)

ν̄l + l− → W−, (343)

but they are not relevant for our purposes, because positrons, muons, taus and their

antiparticles are not available in usual matter at our detector. Thus, only the interaction

between ν̄e and e− is likely to happen.

Once created, the W− can decay into leptons or hadrons, originating cascades at the
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detector. We will briefly describe them, as done in [57]. The branching fractions of the

W− are about 10 to 11% to each of the leptons (and other products), and around 68%

for a hadronic decay [171]. In the leptonic decay possibility, we expect to see cascades

(see the chapter on the IceCube experiment). In the case of hadronic decays, boson

dominantly decays producing two jets leading to many pions and kaons, which also decay

producing neutrinos.
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5 Cosmology

5.1 The Homogeneous, Isotropic Universe

Cosmological solutions of Einstein’s equation are generally charaterized by their high

degree of symmetry. The reason for this is due to some of the defining cosmological pos-

tulates: the notions of isotropy and homogeneity. Loosely speaking, isoptropy means that

there is no privileged direction in the Universe; it looks the same given a sufficiently large

scale no matter what direction we are looking at. The second assumption is that there is

no privileged point in the Universe, meaning that for any given point our surroundings

would essentially look the same on a certain (cosmological) scale. This second condition

is what we refer to as homogeneity.

Over the course of history, we have faced many problems as we try to undertand the

large scale Universe, and one of the main difficulties we have (and always will) face is the

extremely small amount of observation time mankind has accumulated when compared to

the age of the Universe. However, there are many “windows” through which we can look

at the past of the Universe and predict its future, all motivated by observations of the

present. With that in mind, the outline of this section will be as follows: first, we show

the set of equations and observational data that constitute the current mostly accepted

model of the Universe. Then, we will explore the history of the Universe, which has an

evolution constrained by what we see today. Finally, we expose what is still unknown

and how this affects our predictions about the fate of the Universe.

The solution for the Einstein’s equations that satisfy the homogeneity and isotropy

postulates is called the Friedmann - Robertson - Walker solution (a precise derivation can

be found in many traditional texts, such as [9]; we ommit it here for brevity but it can be
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obtained by symmetry arguments without directly solving Einstein’s Equations). Those

solutions account for three possibilities in terms of spatial curvature: the geometry of a

sphere, hyperboloid or flat Euclidian space. The metric is given by

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2(θ)dφ2)

]
, (344)

where a(t) is called the scale factor and k = 0 for a flat Universe. Note that k = 1 for the

sphere (the positive curvature, called closed universe) and k = −1 for the hyperboloid

(negative curvature, called open universe). The metric above is written in comoving

coordinates, which are independent of the expansion. Physical distances are related to

the comving coordinates through the use of the scale factor, thus the origin of its name.

If one wants to calculate the physical distance, we need the following definition.

Definition

The proper distance (the physical distance) is given by

dp(t) = R(t)

∫ r

0

dr′√
1− kr′2

. (345)

Even though the proper distance seems to be most natural definition in order to measure

distancesit is not practical because its definition requires synchronized local distance mea-

surements along the line between two points. Astronomers normally use other definitions

of distances, such as the angular diameter distance and the luminosity distance.

Probably, the most puzzling part of the observations refers to the components of the

Universe, which seems to be 70% dark energy, responsible for the accelerating expansion,

and 30% non-relativistic matter. However, only about 4% of the components seem to

be baryonic matter, and the rest, dark matter. Dark matter does not interact through

electromagnetism, but does interact gravitationally. One of the greatest open problems

in this field is to elucidate the nature of dark matter, and to detect it; this topic was

actually part of the research presented in later chapters. We will address it in more
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detail on the section where we discuss Λ-CDM model and, of course, when we present

the research results.

With the metric, it is possible to find the Christoffel symbols and the components of

the Ricci tensor. We define

ȧ ≡ da

dt
, (346)

and we also obtain (the non-zero Γ’s)

Γ0
11 =

aȧ

1− kr2
, (347)

Γ0
22 = aȧr2, (348)

Γ0
33 = aȧr2sin2(θ), (349)

Γ1
01 = Γ1

10 = Γ2
02 = Γ2

20 = Γ3
03 = Γ3

30 =
ȧ

a
, (350)

Γ1
22 = −r(1− kr2), (351)

Γ1
33 = −r(1− kr2)sin2(θ), (352)

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1

r
, (353)

Γ2
33 = −sin(θ)cos(θ), (354)

Γ3
23 = Γ3

32 = cot(θ). (355)
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Also, the components of the Ricci tensor and the curvature scalar are given by

R00 = −3
ä

a
, (356)

R11 =
aä+ 2ȧ2 + 2k

1− kr2
, (357)

R22 = r2(aä+ 2ȧ2 + 2k), (358)

R33 = r2(aä+ 2ȧ2 + 2k)sin2(θ), (359)

R =
6

a2
(aä+ ȧ2 + k). (360)

A very good approxiamtion to many systems is that of a perfect fluid, in which the

components interact weakly and in the rest frame of the fluid, an observer sees it as

isotropic. This is the case when the free mean path between the collisions is small as

compared by the length scale used by the observer. The stress-energy-momentum tensor

for a perfect fluid is

T µν = (P + ρ)uµuν − Pgµν (361)

where ρ is the energy density of the fluid in its rest frame, P denotes pressure and uµν is

the 4-velocity of the fluid. In the rest frame of the fluid,

uµ = (1, 0, 0, 0), (362)

and the tensor becomes

T µν = diag(−ρ, P, P, P ). (363)

Note that we are not working on a Minkowski spacetime; thus, we write the conservation

law for T µν as
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∇µT
µ
ν = 0⇒ ∂T µν

∂xµ
+ ΓµσµT

σ
ν − ΓσνµT

µ
σ , (364)

and we look at each component separetely.

∂T µ0
∂xµ

+ ΓµσµT
σ
0 − Γσ0µT

µ
σ = 0. (365)

Note that the only non-vanishing partial derivative is:

∂T µ0
∂xµ

=
∂T 0

0

∂x0
= −∂ρ

∂t
, (366)

using this result and the Christoffel symbols for the FRW metric, we get:

∂ρ

∂t
+ 3

ȧ

a
(ρ+ P ) = 0⇒ 1

a3

∂ [ρa3]

∂t
= −3

ȧ

a
P. (367)

The equation above is particularly useful because it tells us how the different contents of

the Universe relate to the scale parameter a. In order to do so, it is necessary to define a

relationship between ρ and P , namely an equation of state. For an equation of the form

p = wρ, (368)

gives

ρ̇

ρ
+ 3(1 + w)

ȧ

a
⇒ ρ α a−3(1+w). (369)

Perfect cosmological fluids obey the equation above. For example, if one considers

colisionless nonrelativistic matter (usually reffered to as dust), we have w = 0

∂ [ρma
3]

∂t
= 0⇒ ρm α a−3. (370)

If most of the energy density of the Universe is in the form of dust, we say the Universe

is matter-dominated.

Now we consider the radiation case. For a relativistic quantum gas in thermal equi-
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librium (either bosons or fermions), we have:

P =
ρ

3
, (371)

which gives

∂ρr
∂t

+ 3
ȧ

a
(ρr + P ) =

∂ρr
∂t

+ 3
ȧ

a

(
ρr +

ρr
3

)
= a−4∂ [ρra

4]

∂t
= 0. (372)

This implies that the energy density of radiation scales as a−4. The physical reason for

this dependence of the density with the scale factor can be seen that the matter density

decreases as the volume of the Universe increases (thus the factor a−3), while for radiation

we also have an extra factor: the redshift, which adds to the exponent giving a−4.

The other form of energy we consider comes from the energy of the vacuum, which

comes in the form of a cosmological constant,

Gµν = 8πGTµν − Λgµν , (373)

and we can define

T (vac)
µν = − Λ

8πG
gµν . (374)

This looks like a perfect fluid with

ρ = −P =
Λ

8πG
→ w = −1. (375)

Note that the result is independent of a, the scale factor, unlike the previous cases. If

we include all the contributions (matter, radiation and dark energy), we can define an

energy-momentum tensor as

T µν = T µνΛ + T µνMatter + T µνRadiation, (376)

and we can write the values for the w of the equation of state,
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I) w = 0, matter

II) w = 1/3, radiation

III) w = −1, vacuum energy

If one has the metric and puts it into Einstein’s equations, after some algebra, one

obtains

(
ȧ

a

)2

=
Λ

3
+

8πG

3
ρ− Kc2

a2
, (377)

ä

a
=

Λ

3
− 4πG

3

(
ρ+

3P

c2

)
, (378)

which are called Friedmann’s equations. If we combine the equations from the last defi-

nition, we obtain

d

dt

(
ρa3c2

)
+ P

d

dt
(a3) = 0, (379)

the relativistic analogue of

TdS = dE + PdV = 0, (380)

an adiabatic condition.

At this point, it is useful to formally introduce the famous Hubble constant. It is

important to mention again that Hubble originally obtained this by observation, while

we are introducing it after having a developed theory. The Hubble constant is defined by

H =
ȧ

a
. (381)

Note that this is not really a constant, because it can change with time. We also refer to

it as the Hubble parameter often. Also, we introduce the scalled Hubble parameter h,

H = 100h km s−1Mpc−1 (382)
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One can rewrite the first Friedmann equation with this definition, and also define

some other variables:

H2 =
8πG

3
(ρ+ ρΛ)− kc2

a2
, (383)

with

ρΛ ≡
Λ

8πG
, ρ = ρm + ρr. (384)

Note that ρ is a sum of the matter and radiation components. The matter content is a

combination of baryonic and dark matter, while the radiation part can be written as a

combination of photons and neutrinos.

ρ = ρbar + ρCDM + ργ + ρν . (385)

Definition

We define

ρcrit =
3H2

8πG
= 1.05× 10−5h2GeVcm−3, (386)

as the critical density. Also, we have the density parameter

Ω ≡ ρ

ρc
=

8πGρ

3H2
. (387)

If one puts ρ+ ρΛ = ρcrit, we see that k = 0. That’s the condition for a flat Universe.

The combination of the results and definitions so far, namely the first Friedmann equation,

the densities and the way different components depend on the scale factor allow us to

write

H2

H2
0

= ΩRa
−4 + ΩMa

−3 + Ωka
−2 + ΩΛ. (388)
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The parameters ΩM , ΩR and ΩΛ are, respectively, the density parameters of matter,

radiation and cosmological constant today, when a = 1 (H0 is also the present value of

the Hubble constant). The term Ωk depends on the critical density,

Ωk = 1− Ω. (389)

It is usually called the spatial density parameter, as a relation to the curvature can be

seen from its definition. For instance, suppose that Ω = 1 and we have a flat Universe;

that would imply Ωk = 1.

Before we move on to the last topic, we will briefly talk about the effect light undergoes

as it propagates in an expanding Universe: the cosmological redshift. There is a very

elegant exposure on [9]; here, we quote the final result, where the redshift factor z is given

by

z ≡ λobserved − λemitted
λemitted

=
femitted
fobserved

− 1 =
1

a
− 1, (390)

where λ is the wavelength and f the frequency.

5.2 An overview of the physics in the Early Universe

In the late 1920’s, Edwin Hubble found that the Universe was expanding. He not only

measured the distance between the other galaxies and the Milky Way, but also the their

velocities relative to us. To measure the distance, he used Cepheid variable stars with

known mean luminosity; a measurement of the luminosity received here allows us to tell

the distance. To measure the velocity, he looked at the spectral lines of the galaxies, and

noticed a red shift in the light of the vast majority of the sources.

One the most interesting results of the measurement is that the recessional velocities

displayed an almost linear dependence with the distance between the galaxies. In other

words, the farthest a galaxy is from us, the faster it is moving away.

Another piece of evidence is the relative abundance of the light elements like Hydrogen

and Helium. They are sensitive functions of the baryon-to-photon ratio η and the current
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cosmological model agrees very well with observtions.

Finally, and probably the most famous, is the Cosmic Microwave Background. In

1965, Penzias and Wilson observed a strange kind of noise, which seemed to be a uni-

form background (and thus motivated the name). Measurements showed that it had a

blackbody temperature of about 3 K, and the radiation was identified as one of the ”fin-

gerprints” of the Big Bang. Later measurements provided much more accurate data, such

as a better value for the temperature, T = 2.725±0.002 K, (small) anisotropies and so on.

5.2.1 The first moments

In the first 10−43s of the existence of the Universe (as predicted by General Relativity),

the Universe was extremely hot and dense. The spacetime curvature was greater than

the scale of the Planck length,

(
G~
c3

)1/2

≈ 10−33cm, (391)

and we had a density ρ ≈ 1042g/cm3. All of our current theories, including General

Relativity, break at such extreme conditions. Quantum Gravity should be dominant at

this timescale, but at the present we do not have a theory that sucessfully adresses those

matters.

When observing the sky, two properties of the Universe immediately draw our atten-

tion. The first is the called the horizon problem, and is related to finding out why the

cosmological principle (apparently) holds true; i.e, why the Universe seems to be statisti-

cally homgeneous and isoptropic in large scales. The second is the flatness problem, and

as the name suggests, why the Universe is so flat. The most accepted explanation, even

though it is not completely understood yet, is that the Universe went through a phase of

great expansion, on a time of the order of 10−36 s after the Big Bang.

Today, when we observe the different portions of the sky, more precisely, causally

disconnected ones, they seem to be remarkably similar. It is very unlikely that regions

which were separated for so long would look so much alike, if they were not causally
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connected in the past. One way to fix this is to propose that the Universe would be very

hot and small in the beginning, and then underwent a phase of huge expansion. This

would explain the homogeneities, since the Universe would have been causally connected,

and also would account for the size we observe today.

Another effect of inflation is that it can be used to ”flatten” the Universe. This topic

is a bit more technical, so we won’t get into much detail here, but the central idea is

that as the Universe expands, any ”wrinkles” would be washed away. This would help to

explain why the Universe seems to be so flat.

The inflationary model is not perfect, however. Problems exist, like determining

precisely why and when inflation stopped, the question of the topological defects like

monopoles and cosmic strings, which arise when one enforces inflation, and so on. Nev-

ertheless, the inflationary idea is the best we have so far.

Now, we will try to show how inflation is implemented mathematically, in the most

simple case. According to [58], we start by introducing the inflaton, a scalar field φ. The

dynamics of a scalar field minimally coupled to gravity is given by

S =

∫
d4x
√
−g
[

1

2
R +

1

2
gµν∂µφ∂νφ− V (φ)

]
, (392)

where g is the determinant of the metric. The energy-momentum tensor and the field

equation of motion obtained upon variation of this action are,

Tµν ≡ −
2√
−g

δSφ
δgµν

, (393)

which yelds

Tµν = ∂µφ∂νφ− gµν
(

1

2
∂α φ∂αφ+ V (φ)

)
, (394)

δSφ
δφ

=
1√
−g

∂µ(
√
−g ∂µφ) +

∂V

∂φ
= 0. (395)

For the FRW metric and a homogeneous field (only time dependent), one obtainst

the following equations for the terms in the energy-momentum tensor (which looks like
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a perfect fluid),

ρφ =
1

2
φ̇2 + V (φ), (396)

pφ =
1

2
φ̇2 − V (φ). (397)

where ρφand pφ are the density and pressure, respectively. Also, from the equations of

motion,

φ̈+ 3Hφ̇+
∂V

∂φ
= 0, (398)

H2 =
1

3

(
1

2
φ̇2 + V (φ)

)
. (399)

We now have the equations that describe how the inflaton field evolves with time, and

also how it will couple to the evolution of the scale parameter, through ρφ and pφ. If the

inflaton field dominates, the accelration equation becomes

ä

a
= −1

6
(ρφ + 3pρ) = H2(1− ε), (400)

with

ε =
1

2

φ̇2

H2
. (401)

Note that if the slow roll parameter ε < 1, then we have accelerated expansion. This

regime will be sustained for a long amount of time if φ̈ is not very big,

| φ̈ |�| 3Hφ̇ |, | ∂V
∂φ
|, (402)

which can be achieved by making | η |< 1, where

η = − φ̈

Hφ̇
. (403)

95



www.manaraa.com

Under the slow roll conditions, one can show that

a(t) ∼ eHt. (404)

which accounts for an exponentially expanding Universe.

There is strong evidence that the Universe does not have matter-anti-matter symme-

try. There are two possible explanations for this: one is that the Universe was created

with a certain baryonic number, which would have to be strictly conserved. The other

one is what is called baryogenesis; a mechanism that would allow the symmetry breaking

and the production of outnumbering baryons. It is worth mentioning that this process

has not been completely elucidated yet.

If one tries to find a mechanism for baryogenesis, his theory should satisfy the Sakarov

conditions:

I) Baryon number B violation

II) Charge conjugation, C, and composition of charge conjugation and parity, CP,

violation

III) Interactions happening out of thermal equilibrium

The first condition is straightfoward. The second one is related to the fact that if one

produces more of a certain particle then its antiparticle, there is no balance in charge

and parity (if parity is broken, the number of right handed baryons and left handed

antibaryons doesn’t need to be the same, and vice-versa). Finally, in order for these two

conditions to be satisfied, the whole process must happen out of thermal equilibrium,

and that is condition 3, otherwise PCT compensation would balance the processes that

affect the baryon number [18].

5.2.2 An overview of Thermodynamics

We will begin by listing some important thermodynamics and statistical mechanics

results. Then, we will apply those ideas when we discuss decoupling and freeze-out, the
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Boltzmann equation, cross sections and dark matter. With that said, Thermodynamical

quantities can be written in terms of phase space distributions,

n =
g

(2π)3

∫
d3p f(~p), (405)

ρ =
g

(2π)3

∫
d3p f(~p)E(p), (406)

P =
g

(2π)3

∫
d3p

p2

3E
f(~p), (407)

where g represents the number of internal degrees of freedom that the species has. For

weakly interacting quantum particles, we have

f =
1

e(Ei−µi)/Ti ± 1
, (408)

where the + and − signs representing Fermi-Dirac and Bose-Einstein statistics respec-

tively. The f denotes the occupancy of a given state in phase state.

Note that the distributions are a function of temperature and µ, the chemical poten-

tial. For a system in chemical equilibrium, governed by a reaction of the type

A+B ↔ C +D, (409)

we have

µA + µB = µC + µD. (410)

Consider the FD and BE dustributions once again. Note that in the limit m >> T (keep

in mind that mass and energy are related) the exponential dominates the denominator

and is much bigger then the unit. We then have:

f(~pi) = e−[(Ei−µi)/Ti], (411)
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and that is the Maxwell-Boltzmann distribution. In this regime, we don’t distinguish

between fermions and bosons.

With the distribution functions defined, for a system in equilibrium with E2 = p2+m2

ni =
gi

2π2

∫ ∞
mi

(E2
i −m2

i )
1
2 f EidEi =

gi
2π2

∫ ∞
mi

(E2
i −m2

i )
1
2

e(Ei−µi)/Ti ± 1
EidEi, (412)

ρi =
gi

2π2

∫ ∞
mi

(E2
i −m2

i )
1
2 f E2

i dEi =
gi

2π2

∫ ∞
mi

(E2
i −m2

i )
1
2

e(Ei−µi)/Ti ± 1
E2
i dEi, (413)

Pi =
gi

6π2

∫ ∞
mi

(E2
i −m2

i )
1
2 f dEi =

gi
6π2

∫ ∞
mi

(E2
i −m2

i )
3
2

e(Ei−µi)/Ti ± 1
dEi, (414)

It is safe to assume

µ << T, (415)

for almost all times for nearly all particles through the history of the Universe. With this

in mind the distribution functions we mentioned earlier can be regarded as functions of

the ratio E/T . Now, look at the definition of pressure for a given distribution:

P =
g

(2π)3

∫
d3p

p2

3E
f, (416)

and take the derivative with respect to T:

∂P

∂T
=

g

(2π)3

∫
d3p

p2

3E(p)

∂f

∂T
. (417)

Using the chain rule, we write:

∂f

∂T
=
∂f

∂E

∂E

∂(E/T )

∂(E/T )

∂T
= −E

T

∂f

∂E
(418)

Note that this result is obtained for a chemical potential equal to zero for simplicity (the

derivation is exactly the same if we don’t do it, the only difference is an extra term that

leads to a bit more algebra so we ommit it here) and because of teh fact that it is mostly
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used in cosmology in this form. Putting this result on the equation for the pressure,

∂P

∂T
= − g

(2π)3

∫
d3p

p2

3E(p)

E

T

∂f

∂E
= − 1

T

(
g

(2π)3

∫
d3p

p2

3

∂f

∂E

)
. (419)

Note that

E2 = p2 +m2 ⇒ 2EdE = 2pdp⇒ dp =
E

p
dE =

E√
E2 −m2

dE, (420)

where p is the magnitude of the momentum. Furthermore,

d3~p = 4πp2dp, (421)

if one assumes isotropy. Thus,

−∂P
∂T

=
1

T

(
g

(2π)3

∫
d3p

p2

3

∂f

∂E

)
=

1

T

g

(2π)3

(∫ ∞
0

dp
4πp4

3

∂f

∂E

)
=

1

T

g

(2π)3

(∫ ∞
0

dE
E√

E2 −m2

4π

3
(E2 −m2)2 ∂f

∂E

)
=

1

T

g

6π2

(∫ ∞
0

dE E(E2 −m2)3/2 ∂f

∂E

)
,

(422)

and using integration by parts,

−∂P
∂T

=
1

T

g

6π2

(∫ ∞
0

dE E(E2 −m2)3/2 ∂f

∂E

)
=

1

T

g

6π2

[
E(E2 −m2)3/2f

∣∣∣∞
0
−
∫ ∞

0

dE
∂

∂E

(
E(E2 −m2)3/2

)
f

]
= − 1

T

g

6π2

[∫ ∞
0

dE (E2 −m2)3/2f + 3E2(E2 −m2)1/2f

]
= − 1

T
(P + ρ),

(423)

∂P

∂T
=

1

T
(P + ρ)⇒ si =

Pi + ρi
Ti

(424)

If one wants to include the chemical potential, the expression for the entropy becomes

si =
Pi + ρi − µini

Ti
. (425)
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An important remark: in the SM, the net baryon density relative to the photon density

is very small (on the order of 10−10), the chemical potential associated with the baryon

number can be safely neglected. It scales as a−3, even if two different species have different

temperatures.

Following [12], [6] and [14], we will now present some results for the quantities ni, Pi

and ρi. This is done by directly applying the expressions we just presented for different

particles. Note that

ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1

ex − 1
dx, (426)

which is the definition of the Riemann zeta function (Γ(s) is the usual Gamma function).

With that in mind, if we consider a nondegenerate relativistic species (this means Ti >>

µi and Ti >> mi respectively) we obtain for bosons

ni =
1

π2
ζ(3)giT

3
i , (427)

ρi =
π2

30
giT

4
i , (428)

Pi =
ρi
3
, (429)

and for fermions

ni =
3

4π2
ζ(3)giT

3
i , (430)

ρi =
7π2

240
giT

4
i , (431)

Pi =
ρi
3
, (432)

where ζ(3) = 1.20206.... If we have a nonrelativistic particle species Ti << mi, the
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distribution is Maxwell- Boltzmann and we obtain for both bosons and fermions,

ni = gi

(
miTi
2π

)3/2

e−mi/Ti , ρi = mini, Pi = niTi (433)

Due to our assumptions for this case, we see that ρi >> Pi. One can also calculate the

average energy per particle (by dividing ρ/n) which is given by

〈Ei〉 ≈ 2.701Ti (bosons), (434)

〈Ei〉 ≈ 3.151Ti (fermions), (435)

〈Ei〉 = mi +
3Ti
2

(nonrelativistic). (436)

For photons,

nγ =
2ζ(3)

π2
T 3
γ , (437)

ργ =
π

15
T 4
γ , (438)

Pγ =
1

3
ργ, (439)

sγ =
4ργ
3Tγ

. (440)

These relations hold true when we have particles in thermal equilibrium. However, as

the Universe expands the mean free paths of the interactions increase, and consequently

the interaction rate decreases. There is a point when the particles decouple, as they fall

out of thermal equilibrium and are left to evolve independently. An example of this is the

cosmic microwave background, which decoupled from the background. Mathematically,

we implement decoupling as
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Table 1: Effective numbers of degrees of freedom in the standard model

Temperature New particles 4N(T )

T < me γ’s + ν’s 29
me < T < mµ e± 43
mµ < T < mπ µ± 57
mπ < T < T ∗c π’s 69
Tc < T < mcharm - π’s + u, ū, d, d̄, s, s̄ + gluons 247
mc < T < mτ c, c̄ 289
mτ < T < mbottom τ± 303
mb < T < mW,Z b, b̄ 345
mW,Z < T < mHiggs W±, Z 381
mH < T < mtop H0 385
mt < T t, t̄ 427

*Tc corresponds to the confinement–deconfinement transition between quarks and hadrons.

Γ ∼ H, (441)

where the expansion rate is given by H and Γ is the interaction rate.

5.2.3 Degrees of freedom

We can start by trying to write the total radiation energy density as a funtion of the

photons from the CMB,

ρR =
geff

2
ργ. (442)

where g denotes the effective number of relativistic degrees of freedom. Photons are

vector bosons and have two degrees of freedom (due to their helicity). For them, we have

〈Eγ〉 =
ργ
nγ

= 2.7 KTγ. (443)

If we look at other bosons, we can compare them to photons. Note that scalar bososns

have 1 degree of freedom, vector bosons have 2 and so on. If the boson species we are

talking about have already decouples from the photons, then their temperature might

note be the same, since they are not interacting anymore. Therefore, we denote the
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bososns temperature by TB.

nB
nγ

=
gB
2

(
TB
Tγ

)3

, (444)

ρB
ργ

=
gB
2

(
TB
Tγ

)4

. (445)

One can also relate relativistic fermions (for example, electrons and neutrinos) to photons.

Due to the difference between Bose and Fermi integrals, we have some extra numerical

factors [12].

nF
nγ

=
3

4

gF
2

(
TF
Tγ

)3

, (446)

ρF
ργ

=
7

8

gF
2

(
TF
Tγ

)4

. (447)

For example, for electrons we have 4 degrees of freedom (electron, positron, spin up/down).

In the table from [6], we have a list of the degrees of freedom for the Standard Model.

If we consider the limit Ti >> mi,

geff =
∑
B

gB

(
TB
Tγ

)4

+
∑
F

gF

(
TF
Tγ

)4

. (448)

Note that as the temperature raises, more particle degrees of freedom must be taken

into account on this calculation.

When the Universe was very young (age on the order of t < 105 years) it is believed

that it was dominated by radiation. Recall that the equation of state for this situation has

ω = 1/3, and for such small times we can neglect the contribution from other cosmological

terms (like matter and Λ) to find

a ∼ t1/2, ρR ∼ a−4, (449)

which yelds
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H = 1.66
√
geff

T 2

MPl

, (450)

t = 0.301
1

√
geff

MPl

T
∼
(

T

MeV

)−3

seconds, (451)

with MPl as the Planck mass. As we can see, there is a relation between the expansion

of the Universe, the relativistic degrees of freedom and temperature.

Another useful quantity is the effective number of neutrino species, which can be used

to write the energy density of relativitic species in an alternative way,

N eff
ν ≡

(
ρR − ργ
ρν

)
≈ 8

7

∑
B

gB
2

(
TB
Tγ

)4

+
∑
F

gF
2

(
TF
Tγ

)4

, (452)

ρR =

[
1 +

7

8

(
4

11

)4/3

N eff
ν

]
. (453)

Finally, we point out that it is possible to use the relation

ρ̇ = −3H(ρ+ P ), (454)

to find an equation for the conservation of energy per comoving volume when we have a

thermodynamic system in equilibrium. Since

Ṗ = sṪ (455)

from thermodynamics, we obtain

d

dt
(sa3) = 0. (456)

5.2.4 The Boltzmann equation

Suppose that we have a statistical distribution of particles f(p;x), with 3-momentum

between (p, p + dp), energy between (E,E + dE), and space-time coordinates between

(x, x+dx) in an expanding isotropic Universe, and we are interested in finding an equation
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on how those particles evolve with time. The expression that describes this is called

Boltzmann equation, we will present a brief derivation of it for the colliisonless case. An

extension of this result can be extended to take into account scattering and annihilations,

and it can be found on [14], [12],

The Boltzmann equation is defined as:

L(f) = C(f) (457)

where L is the Liouville operator, C is the collision operator, and f = f(xµ, pν) is the

distribution function of the particle in phase space. We are not considering collisions, so

we will only worry about the Liouville operator. Consider the total time derivative of f :

df

dt
=
∂f

∂t
+
∂f

∂xi
dxi

dt
+
∂f

∂p

dp

dt
. (458)

Since we are working in a cosmological context, the background metric is not flat (FRW

metric), so we need to take that into account. Recall the geodesic equation for a vector

vµ defined in an arbitrary spacetime:

dvµ

dt
+ Γµαβv

αvβ = 0, (459)

where Γµαβ is the Christoffel symbol. Applying this to the total derivative of the momen-

tum:

df

dt
=
∂f

∂t
+

∂f

∂xν
pν − ∂f

∂pµ
Γµαβp

αpβ, (460)

and we define:

L =
∂

∂t
+

∂

∂xν
pν − ∂

∂pµ
Γµαβp

αpβ. (461)

For a FRW metric, and assuming that E = p (we take c = 1) for the neutrinos,

L = E
∂f

∂t
−HE2 ∂f

∂E
. (462)
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For the collisionless case, L(f) = 0.

∂f

∂t
−HE ∂f

∂E
= 0. (463)

The number density is defined as:

nν =
g

(2π)3

∫
d3p f, (464)

so we multiply the equation by
g

(2π)3
and integrate. Since the integration is over the

momentum, the first term (time derivative) is simple, and becomes just
∂nν
∂t

. The other

one is a bit more subtle. Let’s take a closer look:

g

(2π)3

∫
d3p HE

∂f

∂E
=

g

(2π)3

∫
4πp2dp HE

∂f

∂E
, (465)

where isotropy over the momentum space is assumed. But energy and momentum are

interchangable (we are still using c=1), so we use integration by parts:

g

(2π)3

∫
4πp3dp H

∂f

∂p
= 3

g

(2π)3

∫
4πp2dp Hf = 3H

g

(2π)3

∫
d3p f = 3Hnν . (466)

Finally, the Boltzmann equation becomes:

∂nν
∂t

+ 3Hnν = 0⇒ ∂[nν/(1 + z)3]

∂t
= 0. (467)

We can modify this equation by introducing two terms: a source term and a term to

account for continuous redshift loss. They will appear on the right hand side of the

equation.

∂[nν/(1 + z)3]

∂t
=
∂(HEnν/(1 + z)3)

∂E
+Qν . (468)

We will need the equation in this form later in Part III, when we study the neutrinos

produced by heavy dark matter decay.
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5.3 Dark matter, dark energy and the ΛCDM model

5.3.1 Observational evidence

The first and still most powerful evidende for the existence of dark matter comes from

the observation of the motion of astrophysical objects, such as stars [60]. By looking at

objects on the sky and measureing their speeds, one sees that they move faster than they

should if only the gravitational attraction of visible matter is taken into account.

The most famous case is the measurement of galactic rotation curves. If we have a

body moving on a stable Keplerian orbit aroud a galaxy,

v(r)α

√
M(r)

r
, (469)

with M(r) the mass inside the orbit of radius r. However, when we measure the veloc-

ity distribution this is not what we observe; instead we see that the velocity becomes

essentially constant for large r. For the Milky Way, this velocity is v ≈ 220 m/s. Other

observations, such as galactic clusters also provide evidence for dark matter.

In 2011 the Nobel Prize in Physics was awarded to Saul Perlmutter, Brian P. Schmidt

and Adam G. Riess “for the discovery of the accelerating expansion of the Universe

through observations of distant supernovae”. By observing type Ia supernova, the Saul

Perlmutter’s team and another team headed by Brian P. Schmidt and Adam G. Riess

they concluded that the Universe was expanding at an accelerated rate ([62], [63], [64].

The general belief is that this expansion is driven by dark energy.

The most accurate measurements we have are made indirectly, and come from fits

of cosmological data. The WMAP mission is one of those experiments, which collected

data from seven years of observations. According to the results [65], we have the matter

density

Ωm = 0.266± 0.26, (470)

and the vacuum energy density
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ΩΛ = 0.734± 0.029. (471)

The matter budget has tree free parameters, h0, Ωmh
2
0 and Ωbh

2
0,

h0 = 0.710± 0.025, (472)

Ωmh
2
0 = 0.1334+0.0056

0.0055 , (473)

Ωbh
2
0 = 0.02258+0.00057

0.00056 , (474)

which are the Hubble expansion rate, the matter density and the baryon density all

measured in the present. By looking at this and the diference between the matter and

baryon density we conclude that there exists a cold dark matter density, but we are not

sure about its nature.

We can, however, infer some general properties that dark matter must satisfy. Essen-

tially we now that dark matter can not affect the other observed cosmological processess,

such as the nucleossynthesis, and a very plausible candidate is made of weakly interact-

ing massive particles (WIMPs) which only interacts thorugh the weak force and gravity.

Most of the dark matter must be stable or decays in such a way that does not affect

other physical processess, the gravitational interaction explains structure formation and

rotation curves (agreeing with individual and galxy cluster observations) and the weak

interaction accounts for the fact that it is dark (not visible) and cold. in addition, WIMPs

are naturally produced with the required cosmological densities [66].

5.3.2 The Planck spacecraft and cosmological parameters

The Cosmic Microwave Background has been extensively used over the years as a

source of data to mesure cosmological parameters and test theories. The CMB radiation,

and in particular the study of its anisotropies, provides information about the matter

108



www.manaraa.com

content, geometry and evolution of the Universe on late times. The Planck spacecraft

is a third-generation space mission following the ground breaking work of COBE and

WMAP that is dedicated to the study of those anisotropies, and so far has provided us

excellent cosmological measurments [40].

The results of the observations are consistent with a certain cosmological model.

According to that model, we live a spatially flat Universe, with dark energy, cold dark

matter, baryons and radition following the description we provided along this chapter.

Due to its sucess, it is usully referred to as the standard model of Big Bang cosmology,

and is called ΛCDM. It assumes General Relativity as the fundamental theory, and makes

accurate predictions concerning the CMB, nucleosysthesis and much more.

Strictly speaking, the TT, TE, EE spectra recorded by the Planck spacecraft when

combined with polarization maps (lowP) describe the standard spatially-flat 6-parameter

ΛCDM model

{Ωbh
2, ΩCDMh

2, Θs, τ, ns, As}, (475)

with high precision: (i) baryon density, Ωbh
2 = 0.02225 ± 0.00016; (ii) CDM density,

ΩCDMh
2 = 0.1198±0.0015; (iii) angular size of the sound horizon at recombination, Θs =

(1.04077 ± 0.00032) × 10−2; (iv) Thomson scattering optical depth due to reionization,

τ = 0.079 ± 0.017; (v) scalar spectral index, ns = 0.9645 ± 0.0049; (vi) power spectrum

amplitude of adiabatic scalar perturbations, ln(1010As) = 3.094 ± 0.034 [231]. Planck

data also constrain the Hubble constant h = 0.6727 ± 0.0066, the dark energy density

ΩΛ = 0.6844± 0.0091, the amplitude of initial density perturbations σ8 = 0.831± 0.013,

and the mass density parameter Ωm = 0.3156± 0.0091

However, this is not the end of the story. Other experiments and collaborations also

provide information about cosmological parameters; the problem is that the results do

not entirely agree. This was a motivation for part of the research presented in this

dissertation.
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6 Beyond the Standard Model

6.1 Introduction

The conspicuously well-known accomplishments of the SU(3)C × SU(2)L × U(1)Y

standard model (SM) of strong and electroweak forces can be considered as the apotheo-

sis of the gauge symmetry principle to describe particle interactions. Most spectacularly,

the recent discovery [131, 132] of a new boson with scalar quantum numbers and cou-

plings compatible with those of a SM Higgs has possibly plugged the final remaining

experimental hole in the SM, cementing the theory further.

Arguably, the most challenging puzzle in high energy physics today is to find out

what is the underlying theory that completes the SM. The overly conservative approach

to this dilemma has been to assess the consistency of the SM assuming a vast desert

between the electroweak scale MEW ∼ 103 GeV and the Planck mass MPl ∼ 1019 GeV.

The relevant physics of the desert hypothesis is determined by running couplings into

the ultraviolet (UV) using renormalization group (RG) equations. The behavior of the

running couplings depends sensitively on the weak scale boundary conditions, among

which the mass of the Higgs boson is perhaps the most critical. The measured Higgs

mass mH = 125.5± 0.5 GeV [133, 134, 135, 136] corresponds to a Higgs quartic coupling

λ close to zero when renormalized at energies above Λ ∼ 1011 GeV.

Strictly speaking, next-to-leading order (NLO) constraints on SM vacuum stability

based on two-loop RG equations, one-loop threshold corrections at the electroweak scale

(possibly improved with two-loop terms in the case of pure QCD corrections), and one-

loop effective potential seem to indicate mH saturates the minimum value that ensures a

vanishing Higgs quartic coupling around MPl, see e.g. [137, 138, 139, 140, 141, 142, 143,
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144, 145, 146, 147]. However, the devil is in the details. More recent NNLO analyses [148,

149, 150] yield a very restrictive condition of absolute stability up to the Planck scale

mH >

[
129.4 + 1.4

(
mt/GeV − 173.1

0.7

)
− 0.5

(
αs(mZ)− 0.1184

0.0007

)
± 1.0th

]
GeV . (476)

On combining in quadrature the theoretical uncertainty with experimental errors on

the mass of the top (mt) and the strong coupling constant (αs), one obtains mH >

129± 1.8 GeV. The vacuum stability of the SM up to the Planck scale is excluded at 2σ

(98% C.L. one sided) for mH < 126 GeV [148, 149, 150].

The instability of the SM vacuum does not contradict any experimental observation,

provided its lifetime τ is longer than the age of the universe TU. Since the stability condi-

tion of the electroweak vacuum is strongly sensitive to new physics, from the phenomeno-

logical point of view it is clear that beyond SM physics models have to pass a sort of

“stability test” [151, 152, 153]. Indeed, only new physics models that reinforce the require-

ment of a stable or metastable (but with τ > TU) electroweak vacuum can be accepted as a

viable UV completion of the SM [154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165].

From a theoretical perspective some modification of the Higgs sector has long been

expected, as the major motivation for physics beyond the SM is aimed at resolving the

huge disparity between the strength of gravity and of the SM forces. Even if one abandons

this hierarchy motivation, which does not conflict with any experimental measurement,

the SM has many other (perhaps more basic) shortcomings. Roughly speaking, the SM

is incapable of explaining some well established observational results. Among the most

notable of these are neutrino masses, the QCD theta parameter, and the presence of a

large non-baryonic dark matter (DM) component of the energy density in the universe.

Interestingly, if the new dynamics couples directly to the Higgs sector, this may induce

deviations from the usual vacuum stability and perturbativity bounds of the SM. However,

beyond SM physics models are usually driven by rather high scale dynamics (e.g., the
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neutrino seesaw and the QCD axion), in which case there will be a negligible effect on the

running of the couplings. A notable exception to this is the weakly interacting massive

particle (WIMP) DM, whose mass scale is constrained to be low if produced by thermal

freeze-out [172].

The scalar Higgs portal is a compelling model of WIMP DM in which a renormalizable

coupling with the Higgs boson provides the connection between our visible world and a

dark sector consisting of SU(3)C × SU(2)L × U(1)Y singlet fields [173, 174, 175, 176].

This is possible because the Higgs bilinear Φ†Φ is the only dimension-2 operator of the

SM that is gauge and Lorentz invariant, allowing for an interaction term with a complex

singlet scalar S of the form

∆V = λ3Φ†ΦS†S . (477)

Given that S develops a vacuum expectation value (VEV), the Higgs mixes with the

singlet leading to the existence of two mass eigenstates (h1 and h2), which in turn open

the portal into a weak scale hidden sector. Despite its simplicity, in fact, this model offers

a rich phenomenology, and it provides a simple and motivated paradigm of DM.

In this chapter we carry out a general analysis of vacuum stability and perturbativity

in the SM augmented by a Higgs portal with a minimal weak scale hidden sector. The

layout is as follows. In Sec. 6.2 we outline the basic setting of the scalar Higgs portal

model and discuss general aspects of the effective low energy theory resulting from a

minimal hidden sector. In Sec. 6.3 we confront the model with a variety of experimental

data, including direct DM searches, heavy meson decays with missing energy, the invisible

Higgs width, as well as astrophysical and cosmological observations. In Sec. 6.4 we derive

the RG equations and in Sec. 6.5 we present the analysis of vacuum stability. Our

conclusions are collected in Sec. 6.6.

6.2 Minimal Higgs Portal Model

A viable DM candidate must be stable, or nearly so. Stability results from either an

unbroken or mildly broken symmetry in the Lagrangian. A discrete Z2 symmetry is the
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simplest available symmetry to guarantee absolute stability of the DM particle. Under

Z2 the SM particles are even while the DM particle is odd [177]. The required symmetry

may be simply introduced by hand into the SM, or, more naturally, may remain after

breaking of some global continuous symmetry. For example, a concrete realization of such

a hidden sector could emerge when a global U(1) symmetry is spontaneously broken by

a scalar field with charge 2 under that symmetry, and so a discrete Z2 symmetry arises

automatically in the Lagrangian. After spontaneous symmetry breaking, fields with an

even (odd) charge under the global U(1) symmetry will acquire an even (odd) discrete

charge under Z2. Consequently the lightest particle with odd charge will be absolutely

stable, and thus a plausible dark matter candidate. The simplest approach to realize this

scenario is to introduce one new complex scalar field S and one Dirac fermion field ψ

into the SM. These new fields are singlets under the SM gauge group, and charged under

U(1)W symmetry, such that U(1)W (ψ) = 1 and U(1)W (S) = 2. Spontaneous breaking

of a global continuous symmetry generates a massless Goldstone boson and a CP -even

scalar, and splits the Dirac fermion into two new mass-eigenstates, corresponding to

Majorana fermions.

The renormalizable scalar Lagrangian density of the set up described above is found

to be

Ls = (DµΦ)†DµΦ + (DµS)†DµS − V , (478)

where

V = µ2
1Φ†Φ + µ2

2S†S + λ1(Φ†Φ)2 + λ2(S†S)2 + ∆V (479)

is the potential and

Dµ = ∂µ − ig2τ
aW a

µ − igY Y Bµ (480)

is (in a self-explanatory notation) the covariant derivative. In the spirit of [178], we write

S in terms of two real fields (its massive radial component and a massless Goldstone
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boson). The radial field develops a VEV 〈r〉 about which the field S is expanded

S =
1√
2

(〈r〉+ r(x)) ei 2α(x) . (481)

The phase of S is adjusted to make 〈α(x)〉 = 0. Next, we impose the positivity condi-

tions [176]

λ1 > 0, λ2 > 0, λ1λ2 >
1

4
λ2

3 . (482)

If the conditions (482) are satisfied, we can proceed to the minimization of (479) as a

function of constant VEVs for the two scalar fields. In the unitary gauge the Higgs

doublet is expanded around the VEV as

Φ(x) =
1√
2

 0

〈φ〉+ φ(x)

 , (483)

where 〈φ〉 = 246 GeV.

The physically most interesting solutions to the minimization of (479) are obtained

for 〈φ〉 and 〈r〉 both non-vanishing

〈φ〉2 =
−λ2µ

2
1 + 1

2
λ3µ2

2

λ1λ2 − 1
4
λ2

3

(484)

and

〈r〉2 =
−λ1µ

2
2 + 1

2
λ3µ

2
1

λ1λ2 − 1
4
λ2

3

. (485)

To compute the scalar masses, we must expand the potential (479) around the minima

(484) and (485). We denote by h1 and h2 the scalar fields of definite masses, mh1 and mh2

respectively. After a bit of algebra, the explicit expressions for the scalar mass eigenvalues

and eigenvectors read

m2
h1

= λ1〈φ〉2 + λ2〈r〉2 − ζ , (486)
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and

m2
h2

= λ1〈φ〉2 + λ2〈r〉2 + ζ , (487)

with

ζ =
∣∣∣√(λ1〈φ〉2 − λ2〈r〉2)2 + (λ3〈φ〉〈r〉)2

∣∣∣ (488)

and

 h1

h2

 =

 cosθ −sinθ

sinθ cosθ


 r

φ

 . (489)

Here, θ ∈ [−π/2, π/2] also fullfils

sin2θ =
λ3〈φ〉〈r〉√

(λ1〈φ〉2 − λ2〈r〉2)2 + (λ3〈φ〉〈r〉)2
. (490)

Now, it is convenient to invert (486), (487) and (490), to extract the parameters in the

Lagrangian in terms of measurable quantities: mh1 , mh2 and sin2θ. We obtain

λ1 =
m2
h2,1

4〈φ〉2
(1− cos 2θ) +

m2
h1,2

4〈φ〉2
(1 + cos 2θ),

λ2 =
m2
h1,2

4〈r〉2
(1− cos 2θ) +

m2
h2,1

4〈r〉2
(1 + cos 2θ), (491)

λ3 = sin2θ

(
m2
h2,1
−m2

h1,2

2〈φ〉〈r〉

)
.

Note that there are two distinct regions of the parameter space: one in which the hidden

scalar singlet is heavier than the Higgs doublet and one in which is lighter. The small θ

limit leads to the usual SM phenomenology with an isolated hidden sector.

For the DM sector we assume at least one Dirac field

Lψ = iψ̄γ · ∂ψ −mψψ̄ψ −
f√
2
ψ̄cψ S† − f ∗√

2
ψ̄ψc S . (492)
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As advanced above, we assign to the hidden fermion a charge U(1)W (ψ) = 1, so that the

Lagrangian is invariant under the global transformation eiWα. Assuming the transforma-

tion is local we express ψ as

ψ(x) = ψ′(x)eiα(x). (493)

Now, after r achieves a VEV we expand the DM sector to obtain

Lψ =
i

2

(
ψ̄′γ.∂ψ′ + ψ̄′cγ.∂ψ′c

)
− mψ

2

(
ψ̄′ψ′c + ψ̄′cψ′c

)
− f 〈r〉

2
ψ̄cψ′ − 〈f〉

2
ψ̄′ψ′c − 1

2

(
ψ̄′γψ′ − ψ̄′cγψ′c

)
.∂α− f

2

(
ψ̄2ψ′ + ψ̄′ψ′c

)
.

(494)

The diagonalization of the ψ′ mass matrix generates the mass eigenvalues,

m± = mψ ± f〈r〉, (495)

for the two mass eigenstates

ψ− =
i√
2

(ψ′c − ψ′) and ψ+ =
1√
2

(ψ′c + ψ′) . (496)

In the new basis, the act of charge conjugation on ψ± yields

ψc± = ψ± , (497)

which implies that the fields ψ± are Majorana fermions. The Lagrangian is found to be

Lψ =
i

2
ψ̄+γ.∂ψ+ +

i

2
ψ̄−γ.∂ψ−

− 1

2
m+ψ̄+ψ+ −

1

2
m−ψ̄−ψ−,

i

4 〈r〉
(ψ̄+γψ− + ψ̄−γψ+).∂α′,

f

2
r(ψ̄+ψ+ + ψ̄−ψ−) ,

(498)
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Table 2: Definition of most common variables.

Φ Higgs doublet
S Complex scalar field
φ Neutral component of Φ
r Massive CP -even scalar
α′ Goldstone boson
H SM Higgs boson
h1,2 Scalar mass eigenstates
λ3 Quartic coupling between SM and hidden sector
θ Mixing angle between h1 and h2

w Lightest Majorana fermion (WIMP)
f w − r coupling constant – see Eq. (498) –

where α′ ≡ 2α 〈r〉 is the canonically normalized Goldstone boson [178]. We must now

put r into its massive field representation, for which the interactions of interest are

L = −fsinθ
2

h1,2(ψ̄+ψ+ + ψ̄−ψ−)− f cos θ

2
h2,1

× (ψ̄+ψ+ + ψ̄−ψ−). (499)

This leads to 3-point interactions between the Majorana fermions and the Higgs doublet.

All in all, the Dirac fermion of the hidden sector splits into two Majorana mass-

eigenstates. The heavier state will decay into the lighter one by emitting a Goldstone

boson. The lighter one, however, is kept stable by the unbroken reflection symmetry.

Hence, we can predict that today the universe will contain only one species of Majorana

WIMP, the lighter one w, with mass mw equal to the smaller of m±. Therefore, the

dark sector contains five unknown parameters: mw, mh1,2 , λ2, θ, and f . To facilitate the

calculation of the WIMP relic density, throughout we impose a supplementary constraint

relating some of these free parameters: ∆m/mw � 1, where ∆m = |m+ −m−| = 2|f〈r〉|.

(The most common variables used in this article are summarized in Table 2.)

A cautionary note is worth taking on board at this juncture. It is well known that

the spontaneous breaking of a global U(1) symmetry have several disconnected and de-

generate vacua (the phase of the vacuum expectation value 〈0|S|0〉 can be different in

different regions of space, and actually we expect it to be different in casually discon-
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nected regions), yielding dangerous domain-wall structure in the early universe [179, 180].

In the spirit of [179], it may be possible to explicitly break the symmetry introducing

(possibly small) terms in V , such that the domain walls disappear before dominating the

matter density of the universe, while leaving (pseudo-)Goldstone bosons and the same

dark matter phenomenology [156].2 For simplicity, we restrict our considerations to the

potential in (479), but generalizations are straightforward.

6.3 Constraints from experiment

The mixing of r with the Higgs doublet φ can be analyzed in a two-parameter space

characterized by the mass of hidden scalar mhi and the mixing angle θ, where i = 1 for

a light scalar singlet (i.e. mh2 = mH) and i = 2 for a heavy one (i.e. mh1 = mH).

We begin to constrain this parameter space by using data from DM searches at direct

detection experiments.

6.3.1 Constraints from direct DM searches

The wN cross section for elastic scattering is found to be

σwN =
4

π

m2
wm

2
N

(mw +mN)2

f 2
p + f 2

n

2
, (500)

where N ≡ 1
2
(n+p) is an isoscalar nucleon in the renormalization group-improved parton

model [184, 185]. The effective couplings to protons fp and neutrons fn are given by

fp,n =
∑

q=u,d,s

Gq√
2
f

(p,n)
Sq

mp,n

mq

+
2

27
f

(p,n)
SG

×
∑
q=c,b,t

Gq√
2

mp,n

mq

, (501)

2Other approaches, if exceedingly fine-tuned, may offer alternative solutions [181, 182, 183].
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where Gq is the WIMP’s effective Fermi coupling for a given quark species,

L =
Gq√

2
ψ̄−ψ−ψ̄qψq , (502)

with ψq the SM quark field of flavor q. The first term in (501) reflects scattering with

light quarks, whereas the second term accounts for interaction with gluons through a

heavy quark loop. The scalar spin-independent form factors, f
(p,n)
Sq , are proportional to

the matrix element, 〈q̄q〉, of quarks in a nucleon. Herein we take [186]

fpSu = 0.016(5)(3)(1), fnSu = 0.014(5)(+2
−3)(1),

fpSd = 0.029(9)(3)(2), fnSd = 0.034(9)(+3
−2)(2),

fpSs = 0.043(21), fnSs = 0.043(21) , (503)

in good agreement with the scalar strange content of the nucleon from lattice QCD

calculations [187]. The gluon scalar form factor is given by f
(p,n)
SG = 1−

∑
u,d,s f

(p,n)
Sq . For

the case at hand,

f 2
p + f 2

n

2m2
N

'
(

0.29
Gq√
2mq

)2

, (504)

with

Gq

mq

=

√
2fλ3 〈r〉

2m2
h1
m2
h2

, (505)

yielding [188]

σwN =
1

π

m2
wm

4
N

(mw +mN)2

(
0.29λ3 〈r〉 f
m2
h1
m2
h2

)2

; (506)

see Appendix D for details. We may re-express this result in terms of the mixing angle,
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σwN = (0.29)2 1

4π

m2
wm

4
N

(mw +mN)2

(
1

m2
h1

− 1

m2
h2

)2

×
(
f

〈φ〉

)2

sin22θ . (507)

For θ � 1, the upper limits on the nucleon-wimp cross sections derived by the various

experiments translate into upper limits on the mixing angle

|θ| <
(mw +mN)

m2
Nmw

〈φ〉
f

∣∣∣∣ 1

m2
h1

− 1

m2
h2

∣∣∣∣−1

×
√
π

0.29

√
σwN(mw) . (508)

Figure 5: The relation in Eq. (510).

To determine f we require the w relic density to be consistent with h2ΩDM ' 0.111(6) [189].

In our study we consider the interesting case in which mhi < mw and hence the instanta-

neous freeze-out approximation is valid [190]. In this region of the parameter space, the

w’s predominantly annihilate into a pair of hi’s or co-annihilate with the next-to-lightest

Majorana fermion, producing a scalar hi and a Goldstone boson. All of the final state

hi subsequently decays into α′. We note, however, that for mw ≈ mH/2 one expects

dominant annihilation into fermions. We have found that for the considerations in the
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present work, the effective thermal cross section can be safely approximated by [190]

lim
∆m/mw→0

〈σwwvM〉 ≈
f 4

32πm2
w

, (509)

yielding

f ≈

(
1.04× 1011 GeV−1 xf√

g(xf ) MPl ΩDMh2

)1/4
√
mw , (510)

where xf = mw/Tf , g(xf ) is is the number of relativistic degrees of freedom at the

freeze-out temperature Tf , and mhi/mw . 0.8 [190]. In general for WIMP DM xf ≈

20 − 25 [191]. The precise relation between the WIMP mass and the required Yukawa

coupling to attain the relic density condition is shown in Fig. 5. We note that the

mass upper limit, mw < 74 TeV, is in agreement with the unitarity limit ΩDMh
2 ≥

1.7× 10−6√xf [mw/(1 TeV)]2 [192], which implies mw ≤ 110 TeV [193].

Using (508) we can now translate the 90% confidence limit on the spin independent

elastic WIMP-nucleon cross section as obtained by direct detection experiments into an

upper limit of |θ|. In Fig. 6 we show constraints on this parameter space from direct

dark matter searches. For mw & 8 GeV, the most restrictive constraint comes from the

LUX experiment [194], whereas for mw . 8 GeV, the most restrictive upper limit is from

the SuperCDMS low threshold experiment [195]. It should be noted that indirect DM

searches (e.g. by detecting neutrinos from annihilation of captured low-mass WIMPs

in the Sun) also constrain the WIMP-nucleon elastic scattering cross section. However,

these searches are in general model dependent. For example, for 100% annihilation into

τ+τ− pairs, the Super-Kamiokande Collaboration [196] has set the current best upper

limit on σwN for WIMP masses below 8 GeV. Because of the assumed dominant decay

into SM fields, this limit cannot be used to further constrain the (θ,mh) parameter space.
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Figure 6: Excluded regions of the (| θ |,mh) parameter space from interactions involving
SM particles in the initial state and the CP -even scalar in the final state,
as well from DM direct detection experiments. The horizontal bands indicate
bounds are from heavy meson decays with missing energy (no significant excess
of such decays over background has been observed yielding bounds on the
processes Υ→ γh, B+ → K+h, K+ → π+h) as well as from LEP limits on the
production of invisibly-decaying Higgs bosons σZh/σZH . The diagonal bands
represent bounds from DM direct detection experiments (Super-CDMS and
LUX), for different values of the WIMP mass. Note that all bounds other than
the LEP bound can be smoothly extrapolated to the smallest mh ∼ 35MeV
stipulated by cosmology.

6.3.2 Constraints from heavy meson decay

For mw . 10 GeV, searches for heavy meson decays with missing energy provide

comparable bounds [197, 198, 199]. In particular, the upper limit reported by the BaBar
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Collaboration B(Υ(1S)→ γ + /ET ) < 2× 10−6 [200] yields an upper bound for the mixing

angle, θ < 0.27 [201].3 A stronger constraint follows from LEP limits on the production of

invisibly-decaying Higgs bosons σZh/σZH < 10−4 [204, 205, 206, 207, 208], which implies

θ < 10−2 [209]. More restrictive constraints come from searches for the rare flavor-

changing neutral-current decay B+ → K+ + /ET reported by the BaBar [211, 212, 210],

CLEO [213], and BELLE [214] collaborations, as well as limits on K+ → π+ + /ET from

the E787 [215] and E949 experiments [216, 217, 218]. The resulting excluded regions of

the (|θ|,mh) plane from all these experiments are compared in Fig. 6 with those from

direct DM searches.

6.3.3 Constraints from LHC and SN1987A

Before proceeding we note that additional constraints on the (|θ|,mh) parameter space

can be obtained from limits on Higgs decay into invisible particles and from emission of α′-

particle pairs in a post-collapse supernova core. However, these are not direct constraints

as they depend also on the quartic coupling of the hidden scalar. In particular, since

invisible decays reduce the branching fraction to the (visible) SM final states, it is to

be expected that B(H → invisible) is strongly constrained. Indeed B(H → invisible)

is known to be less than about 19% at 95%CL [219, 220, 221, 222, 223]. This implies

exclusion contours in the (|θ|,mh) plane as a function of the free parameter λ2 given

by [199]

|θ(λ2)| < 1.27× 10−2

[
λ2
m2
H

m2
h

+ f 2

√
1− 4m2

w

m2
H

]− 1
2

.

In addition, the emissivity of α′ due to nucleon bremsstrahlung (NN → NNα′α′) cannot

exceed the limits imposed by SN1987A observations: εα′ ≤ 7.324× 10−27 GeV [224]. For

typical supernova core conditions (T = 30 MeV and ρ = 3× 1014 g/cm3) it is easily seen

that |λ3| ≤ 0.011
(

mh
500 MeV

)2
[225]. For θ � 1 we can translate this limit into a bound on

the mixing angle via

3Comparable bounds are obtained from searches for B(Υ(3S) → γ + /ET ) [202] and B(J/ψ → γ +
/ET ) [203].
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θ ≈ λ3 〈r〉 〈φ〉
m2
H −m2

h

. (511)

By use of mh ≈
√

2λ2 〈r〉 we can express this bound as

|θ| ≤ 7.65 m3
h√

λ2|m2
H −m2

h|
GeV−1 . (512)

In Fig. 7 we show the exclusion contours for the λ2 = 1 and λ2 = 0.05. For smaller

values of λ2, the excluded regions of the (|θ|,mh) plane are dominated by upper limits

on B-meson decay into invisibles. All in all, for mh2 = mH , we can conclude from Figs. 6

and 7 that 2× 10−3 is a conservative 90% CL upper limit on the mixing angle.

Figure 7: Bounds on the (|θ|,mh) including invisible Higgs decays and α′ emission in a
post-collapse supernova core for different assumptions about the value of the
quartic coupling λ2.

For mh2 � mH , (508) can be rewritten as

f |θ| <
1

m2
N

〈φ〉 m2
H

√
π

0.29

√
σwN(mw)

' 2.7× 107
√
σwN(mw) GeV . (513)

Dedicated searches for DM candidates serve as an essential component of the LHC

physics programme. The typical experimental signature of DM production at the LHC
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consists of an excess of events with a single final-state partilce X recoiling against large

amounts of missing transverse momentum or energy. In Run I, the ATLAS and CMS

collaborations have examined a variety of such “mono-X” topologies involving jets of

hadrons, gauge bosons, top and bottom quarks as well as the Higgs boson in the final

state. In particular, the CMS Collaboration has reported very restrictive bounds on

the DM-nucleon scattering cross section from searches in events containing a jet and

an imbalanced transverse momentum [226]. However, it is important to stress that the

contact operator approximation adopted in [226] only holds if the mediator is heavy

and can be integrated out [227]. If the mediator is light and contributes to resonant

DM production (as in the minimal Higgs portal model discussed herein), the contact

approximation fails and the mono-jet bounds do not apply. Future LHC14 mono-X

searches will also probe vertex operators for which the mediator between dark matter

and quarks is heavy [228, 229], and therefore cannot constrain the Higgs portal model

discussed here.

6.3.4 Constraints from cosmology

Cosmological observations further constrain the model. The earliest observationally

verified landmarks – big bang nucleosynthesis (BBN) and the cosmic microwave back-

ground (CMB) decoupling epoch – have become the de facto worldwide standard for

probing theoretical scenarios beyond the SM containing new light species. It is advan-

tageous to normalize the extra contribution to the SM energy density to that of an

“equivalent” neutrino species. The number of “equivalent” light neutrino species,

Neff =
ρR − ργ
ρνL

, (514)

quantifies the total “dark” relativistic energy density (including the three left-handed SM

neutrinos) in units of the density of a single Weyl neutrino

ρνL =
7π2

120

(
4

11

)4/3

T 4
γ , (515)
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where ργ is the energy density of photons (which by today have redshifted to become the

CMB photons at a temperature of about T today
γ ' 2.7 K) [230].

Recent results reported by the Planck Collaboration [231] have strongly constrained

the the presence of an excess ∆Neff above SM expectation: NSM
eff = 3.046 [232]. Specif-

ically, the 68% C.L. constraints on Neff from Planck TT, TE, and EE spectra, when

combined with polarization maps (lowP) and baryon acoustic oscillation (BAO) mea-

surements are [231]:

Neff =



3.13± 0.32 PlanckTT + lowP,

3.15± 0.23 PlanckTT + lowP + BAO,

2.99± 0.20 PlanckTT,TE,EE + lowP,

3.04± 0.18 PlanckTT,TE,EE + lowP + BAO.

The joint CMB+BBN predictions on Neff provide comparable constraints. The 95% C.L.

preferred range on Neff when combining Planck data (TT, TE, EE+lowP) with the helium

abundance estimated in [233] is Neff = 2.99 ± 0.39, whereas the combination of Planck

data with the deuterium abundance measured in [234] yields Neff = 2.91 ± 0.37 [231].

(See also [235].) In summary, one fully thermalize neutrino, ∆Neff ' 1, is excluded at

over 3σ. Models predicting fractional changes of ∆Neff ≈ 0.39 are marginally consistent

with data, saturating the 1σ upper limit. Models predicting, ∆Neff ≈ 0.57, are ruled out

at about 2σ.

As noted in [178] the Goldstone boson α′ is a natural candidate for an imposter

equivalent neutrino. The contribution of α′ to Neff is ∆Neff = ρα′/ρν . Thus, taking

into account the isentropic heating of the rest of the plasma between the decoupling

temperatures, T dec
α′ and T dec

ν , we obtain

∆Neff =
4

7

(
g(T dec

ν )

g(T dec
α′ )

)4/3

, (516)

where g(T ) is the effective number of interacting (thermally coupled) relativistic degrees

of freedom at temperature T ; for example, g(T dec
ν ) = 43/4.4 For the particle content of

4If relativistic particles are present that have decoupled from the photons, it is necessary to distinguish
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the SM, there is a maximum of g(T dec
α′ ) = 427/4 (with T dec

α′ > mt). This corresponds to

a minimum value of ∆Neff = 0.027, which is consistent with cosmological observations.

However, a fully thermalized α′, i.e. T dec
ν = T dec

α′ is excluded at 90% C.L.. Note that if

α′ goes out of thermal equilibrium while the temperature is just above the muon mass

∆Neff = (4/7)(43/57)4/3 = 0.39 . (517)

This corresponds to a number of equivalent light neutrino species that is consistent

at the 1σ level with current data.

The α′ decouples from the plasma when its mean free path becomes greater than the

Hubble radius at that time. The α′ collision rate with any fermion species of mass mf at

or below T is of order [178]

Γ(T ) ∼
λ2

3m
2
fT

7

m4
h1
m4
h2

, (518)

whereas the expansion rate of the universe is of order

H(T ) ≈ T 2

MPl

. (519)

We equate these two rates to obtain

T dec
α′ ≈

(
m2
h1
m2
h2

λ3 mf MPl

)1/5

. (520)

Now, taking mf = T = mµ we obtain

mh ≈
(
λ2

3m
7
µMPl

)1/4

m4
H

. (521)

Substituting the conservative value λ3 = 5× 10−3 in (521) we have mh ≈ 500 MeV. Note

that if the α′ goes out of equilibrium when the only massive SM particles left are e+e−

pairs, ∆Neff = 0.57. In such a case the value of mh would have to be less than given by

(521) by a factor between (me/mµ)1/2 and (me/mµ)7/4 [178]. This sets a lower limit on

between two kinds of g: gρ, which is associated with the total energy density, and gs, which is associated
with the total entropy density. For our calculations we use g = gρ = gs.
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the mass of the hidden scalar: mh ≈ 35 MeV.

6.4 RG Evolution Equations

One-loop corrections to (479) can be implemented by making λ1, λ2, and λ3 energy

dependent quantities. The positivity conditions of (482) then must be satisfied at all

energies.

A straightforward calculation leads to the RG equations for the five parameters in the

scalar potential

dµ2
1

dt
=

µ2
1

16π2

(
12λ1 + 6Y 2

t + 2
µ2

2

µ2
1

λ3 −
9

2
g2

2 −
3

2
g2
Y

)
,

dµ2
2

dt
=

µ2
2

16π2

(
8λ2 + 4

µ2
1

µ2
2

λ3 + 4f 2

)
,

dλ1

dt
=

1

16π2

(
24λ2

1 + λ2
3 − 6Y 4

t +
9

8
g4

2 +
3

8
g4
Y

+
3

4
g2

2g
2
Y + 12λ1Y

2
t − 9λ1g

2
2 − 3λ1g

2
Y

)
, (522)

dλ2

dt
=

1

8π2

(
10λ2

2 + λ2
3 −

1

4
f 4 + 4λ2f

2

)
,

dλ3

dt
=

λ3

8π2

(
6λ1 + 4λ2 + 2λ3 + 3Y 2

t −
9

4
g2

2

− 3

4
g2
Y + 2f 2

)
,

where t = lnQ and Yt is the top Yukawa coupling, with

dYt
dt

=
Yt

16π2

(
9

2
Y 2
t − 8g2

3 −
9

4
g2

2 −
17

12
g2
Y

)
, (523)

and Y
(0)
t =

√
2mt/〈φ〉 (see Appendix E for details). The RG running of the gauge

couplings follow the standard form
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dg3

dt
=

g3
3

16π2

[
−11 +

4

3
ng

]
= − 7

16

g3
3

π2
,

dg2

dt
=

g3
2

16π2

[
−22

3
+

4

3
ng +

1

6

]
= −19

96

g3
2

π2
,

dgY
dt

=
1

16π2

[
41

6
g3
Y

]
, (524)

where ng = 3 is the number of generations [236]. Finally, the running of f is driven

by [237]

df

dt
=

f 3

4π2
. (525)

6.5 Vacuum Stability Constraints

We now proceed to study the vacuum stability of the model through numerical inte-

gration of the equation we just obtained. To ensure perturbativity of f between the TeV

scale and the Planck scale we find from (526),

f =

(
1

f 2
0

− (t− t0)

2π2

)−1/2

, (526)

yielding f0 < 0.7. For normalization, we set t = ln(Q/125 GeV) and tmax = ln(Λ/125 GeV).

Now, using the SM relation m2
H = −2µ2, with mH ' 125 GeV, and setting 〈φ〉2 =

246 GeV at the same energy scale Q = 125 GeV we fix the initial conditions for the

parameters µ and λ. Throughout we take the top Yukawa coupling renormalized at the

top pole mass [238].

6.5.1 Light scalar singlet

We integrate the RG equations from mh2 = mH and impose the initial conditions for

λ1,2,3 by putting the observed values into their equations,
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〈φSM〉2
∣∣
Q=mh2

= 〈φ〉2
∣∣
Q=mh2

, mh2 = mH . (527)

The other quantities in the equations for the λ’s mh1 = mh, θ and 〈r〉 remain free parame-

ters. It is easily seen through numerical integration of the λ’s, Yt and g’s and the running

of f , that there are stable vacua up to the Planck scale. However, for those stable vacua,

the required values of θ and mh are excluded at 90% C.L.

As an illustration, we note that there is a stable solution for 〈r〉 = 2.8 GeV and

mh = 0.3 GeV, which corresponds θ = 0.01. As can be seen in Fig. 6, this region of the

parameter space is excluded at 90% C.L. Actually, for mh = 0.3 GeV, it can be shown

that the mixing angle is bounded from below: θ > 0.004. The argument is as follows.

The Yukawa coupling f of the Majorana fermion does not suppress the growth of λ2, but

does exactly the opposite. This is due to the smallness of f and therefore f 4 < 16λ2
2f

2

in dλ2/dt. As a result, we can simply set f = 0. The RG equation of λ2 then implies a

constraint on its boundary value: λ2 |Q=mH< 0.2 or it blows up before reaching the Planck

scale. For λ2 |Q=mH= 0.2, we need λ3 |Q=mH< −0.28 to have λ1 always positive. We note

that a positive λ3 only makes λ1 grows slower and does not help the situation. A smaller

λ2 |Q=mH only slows down the growth of λ3 and does not improve the stability. In other

words, the maximum of λ3 |Q=mH is −0.28. Moreover, from (491) we see that the mixing

angle decreases monotonically when either λ3 |Q=mH (when it is negative) or λ2 |Q=mH

increases. So we reach a minimum angle when λ2 |Q=mH= 0.2 and λ3 |Q=mH= −0.28,

which gives θ = 0.004. Such a value is excluded at the 90% C.L.

Next, we show that for mh > 0.3 GeV, the required mixing angle for a stable vacuum

up to the Planck scale is θ > 0.004. To this end, we rewrite (491) as

λ2 =
m2
H

4y2
2x2 +

m2
h

4y2
(2− 2x2) , (528)

λ3 = 2x
m2
h −m2

H

2〈φ〉y
, (529)

where we have taken x = sinθ and y = 〈r〉. Now, since mh < mH by increasing mh we
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decrease |m2
h −m2

H | and therefore from (529) we see that x/y increases. Consequently,

the term

m2
H

4y2
2x2 − m2

h

4y2
2x2 (530)

in (528) increases (because it is proportional to x2/y2) and therefore the other term

∝ 1/y2 decreases. In other words, we have both x/y and y rising and therefore x(θ)

increases with increasing mh.

It should be noted that a theoretical lower limit on the mass of the hidden scalar

can be obtained by generalizing the Weinberg-Linde [239, 240] bound (see also [241]).

Herein instead we have used experimental data to determine such a lower limit. For

mh < 0.3 GeV, the previously derived lower bound on θ can be relaxed. However, for

mh = 35 MeV, we cannot reduce the mixing angle to a level consistent with searches for

the rare flavor-changing neutral-current decay K+ → π+ +E/T without sacrificing vacuum

stability, i.e. λ3 ∼ 1 is required to obtain θ . 10−4. Moreover, the upper limit set by

SN1987A observations excludes values of mh < 35 MeV, for λ2 . 0.2. As an illustration,

in Fig. 8 we show a comparison between the θ behavior imposed by vacuum stability and

the upper limit on the mixing angle derived from (512), fixing the quartic coupling of the

hidden scalar to the fiducial value that saturates the condition of vacuum stability, i.e.

λ2 = 0.2.

We conclude that, for mh2 = mH , there are no stable solutions up to the Planck scale

in the allowed region of the parameter space.

6.5.2 Heavy scalar singlet

For energies below the mass of the heavier Higgs h2, the effective theory is (of course)

the SM. In the low energy regime the Higgs sector is given by

LSM ⊃ (DµΦ)† (DµΦ)− µ2Φ†Φ− λ(Φ†Φ)2 , (531)
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Figure 8: Comparison of vacuum stability requirements in the (θ,mh) plane (blue curve)
with the upper limit set by SN1987A observations.

and the RG equations are those of SM. To obtain the matching conditions connecting

the two theories, following [156] we integrate out the field S to obtain a Lagrangian of

the form (531). Identifying the quadratic and quartic terms in the potential yields

µ2 = µ2
1 − µ2

2

λ3

2λ2

(532)

and

λ = λ1

(
1− λ2

3

4λ1λ2

)
, (533)

respectively. This is consistent with the continuity of 〈φSM〉� 〈φ〉; namely

〈φSM〉2 = − µ2

λ

∣∣∣∣
Q=mh′′

= −
µ2

1 −
µ22 λ3
2λ2

λ1

(
1− λ23

4λ1λ2

)
∣∣∣∣∣∣
Q=mh2

,

or equivalently

〈φSM〉2
∣∣
Q=mh2

= 〈φ〉2
∣∣
Q=mh2

, (534)
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with 〈φ〉 given by (484). The quartic interaction between the heavy scalar singlet and

the Higgs doublet provides an essential contribution for the stabilization the scalar field

potential [156].

When we refer to the stability of (479) at some energy Q (with the use of the couplings

at that scale), we are assuming that the field values are at the scale Q. Note that the field

values are the only functional arguments when talking about a potential like (479), and

therefore the appropriate renormalization scale must also be at that scale. For λ3 > 0, the

third condition in (482) could potentially be violated only for field values 〈φ〉 around mh2 ,

regardless of the renormalization scale Q [156]. Consequently, the region of instability is

found to be:

〈r〉 < mh2/
√

2λ2,

Q− < 〈φ〉 < Q+, (535)

Q2
± =

m2
h2
λ3

8λ1λ2

(
1±

√
1− 4λ1λ2

λ2
3

)∣∣∣∣∣
Q∗

,

where Q∗ is some energy scale where the extra positivity condition is violated; see Ap-

pendix ??.5 Therefore, Q± ∼ mh2 when the extra positivity condition is saturated, that

is λ1λ2 = λ3/4. From (535) it follows that Q± ∼ mh2 when all the λi are roughly at the

same scale. If one of the λ1,2 is near zero, then Q+ can be � mh2 , but this region of the

parameter space is constrained by the condition λ1,2 > 0. The stability for field values

at mh2 is then determined by the potential with coupling at scale mh2 (instead of Q).

Therefore, for λ3 > 0, we impose the extra positivity condition in the vicinity of mh2 .

Even though the potential seems unstable at Q� mh2 , it is actually stable when all the

field values are at the scale Q. Note that the potential with λi(Q) can only be used when

the functional arguments (field values 〈φ〉, 〈r〉) are at the scale Q. On the other hand,

5Note that (535) is where the potential can become negative. If the third condition in (482) is satisfied,
Q± will be imaginary, which implies that the potential is always positive. So we need to make sure the
third condition is satisfied Q± ∼ mh2 so that the potential can never be negative. On the other hand, we
only need to consider the third condition in this range as for other 〈φ〉, the potential is positive regardless
of the value of 1

4λ
2
3 − λ1λ2.
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the instability region for λ3 < 0 is given by

〈r〉 >
mh2√
2λ2

,

c− <
〈φ〉
〈r〉

< c+, (536)

c2
± = − λ3

2λ1

(
1±

√
1− 4λ1λ2

λ2
3

)∣∣∣∣∣
Q∗

,

and hence is given by the ratio of 〈φ〉 and 〈r〉, which can be reached even with both

〈φ〉 and 〈r〉 being � mh2 ; see Appendix F. Therefore, for λ3 < 0, we impose the extra

positivity condition at all energy scales. Note that the asymmetry in λ3 will carry over

into an asymmetry in θ.

Figure 9: The red area shows the allowed parameter space in the mh2 vs. θ plane under
the vacuum stability constraint of Eq. (482), with Λ = 1019 GeV. The blue
areas indicate the regions of the parameter space that are not excluded by
direct DM searches for f0 = 0.4, 0.5, 0.7, from light to dark shading. The
perturbative upper bound is defined by λi < 2π.

To solve the system we run the SM couplings from 125 GeV up to the mass scale

mh2 and use the matching conditions to determine 〈φSM〉, which in turns allows one to

solve algebraically for mh1 . In Fig. 9 we compare the region of the parameter space which

contains stable vacua up to the Planck scale (red area) with the allowed (blue) bands
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Figure 10: Comparison of three solutions of stable vacua, with identical initial conditions
except for f0 = 0.4 (red dashed line), f0 = 0.5 (green dot-dashed line), and
f0 = 0.7 (blue solid line).

Figure 11: The allowed parameter space in the mh2 vs. θ plane under the vacuum stability
constraint of Eq. (482), with Λ = 1011 GeV (magenta), Λ = 1015 GeV (green),
and Λ = 1019 GeV (red). The blue areas indicate the regions of the parameter
space that are not excluded by direct DM searches for f0 = 0.4, 0.5, 0.7, from
light to dark shading. The perturbative upper bound is defined by λi < 2π.

from direct DM searches. From (510) it is straightforward to see that the heaviest WIMP

satisfying the relic density constraint, mw = 70 TeV, is near the unitarity limit [192].

However, one can immediately recognize in Fig. 5 that such a WIMP mass exceeds the
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perturbativity limit, f0 ≤ 0.7. The maximum WIMP mass that simultaneously satisfies

the relic density constraint in (510) and the f0 perturbativity limit in (526) ismw = 1 TeV.

This maximum mass then determines the range of the darker blue band in the horizontal

axis (mh2) of Fig. 9. The LUX upper bound on the WIMP-nucleon cross section for elastic

scattering [194] via (513) sets an upper limit on the mixing angle. The allowed values of

θ determine the range of the (blue) bands in the vertical axis of Fig. 9. The different blue

bands correspond to three fiducial values of the Majorana coupling f0 = 0.4, 0.5, 0.7. It

is important to stress that the f0 dependence of the RG running can be safely neglected;

see Fig. 10. It is also important to stress that new physics thresholds, which may appear

near the Planck mass, does not significantly modify the region of the parameter space

with stable vacua, see Fig. 11. In summary, the superposition of the blue and red areas in

Fig. 9 indicates the region of the parameter space which develops a stable vacuum, satisfies

the relic density condition, and is in agreement with direct DM searches. The interesting

region of the parameter space comprises WIMP masses 350 GeV . mw . 1 TeV.6 The

region of interest is within reach of second generation DM direct detection experiments,

such as DEAP3600, DarkSide G2, XENONnT, and DARWIN [244, 245].

6.6 Conclusions

We have studied the vacuum stability of a minimal Higgs portal model in which the

SM particle spectrum is extended to include one complex scalar field S and one Dirac

fermion field ψ. These new fields are singlets under the SM gauge group and are charged

under a global U(1) symmetry: U(1)W (ψ) = 1 and U(1)W (S) = 2. The spontaneous

breaking of this U(1) symmetry results in a massless Goldstone boson, a massive CP -even

scalar, and splits the Dirac fermion into two new mass-eigenstates ψ±, corresponding to

Majorana fermions. The symmetry breaking yields naturally a WIMP candidate. Fields

with an even (odd) charge under the global U(1) symmetry will acquire, after symmetry

breaking, an even (odd) discrete charge under a Z2 discrete symmetry. While the SM

particles are all even under Z2, the Majorana fermions ψ± are odd. In such a set up the

6Curiously, the ATLAS Collaboration has reported a 3σ excess of Higgs pair production HH → γγbb̄
for mh2 ∼ 300 GeV [242]. See also [243].
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lightest particle with odd charge, ψ−, will be absolutely stable, and hence a plausible

WIMP candidate.

We have shown that interactions between the extended Higgs sector and the lightest

Majorana fermion which are strong enough to yield a thermal relic abundance consistent

with observation can easily destabilize the electroweak vacuum or drive the theory into

a non-perturbative regime at an energy scale well below the Planck mass. However, we

have also unmasked a small region of the parameter space which develops a stable vacuum

(up to the Planck scale), satisfies the relic abundance, and is in agreement with direct

DM searches. This region comprises WIMP masses 350 GeV . mw . 1 TeV. The region

of interest is within reach of second generation DM direct detection experiments.

Needless to say, here we have considered a minimal model to ensure that bounding the

parameter space remains tractable. However, our extension of the dark sector enlarges

the parameter space sufficiently to contain stable vacua up to the Planck scale.
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7 Astrophysical Neutrino Production and

multi-messenger search

The key idea behind multi-messenger searches is very simple: a physical process, such

as particle physics reactions taking places in astrophysical sources, can produce multiple

observables. A simple example of this would be a cosmic ray entering the atmosphere; as it

moves and interacts multiple different particles are produced and different can be detected

at the ground. A GRB can produce high neutrinos neutrinos, cosmic rays and gamma

rays, all which can be observed by different experiments even though it is just a single

source. The main consequences of this is that by looking at astrophysical phenomena

from multiple angles we make our conclusions much more precise, since each observable

is connected to each other, imposing mutual bounds and making theories easier to check.

Cosmic rays will also play a crucial role, as they will be used to impose many bounds

and constraints in our results. For a detailed discussion on many astrophysical sources

and multi-messenger search in general, see [67]

7.1 Astrophysical accelerators

Particles can increase their energy gradually, through what is called statistical accel-

eration. This can be accomplished in astrophysical sites where the particles are subject

to numerous encounters with shock waves and regions of changing magnetic fields. These

different prossesses are usually treated as variations of the famous ”Fermi engine”, and

we will present the basic version of it here. Following [17], suppose that we have a test

particle confined in a certain region, where it can interact through shocks and energy

can be transfered from the shocks to the particle. In addition, there is a chance that the
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particle might escape the region. Physically speaking, it makes sense to think that the

more energetic a particle becomes, the harder it is to confine it to a certain region and

provide even more energy.

Suppose that in every interaction, the energy of the particle is increased by the factor

δE = kE, (537)

Thus, after an encounter:

E1 = E0 + kE0 = E0(1 + k), (538)

after two encounters:

E2 = E1 + kE1 = E1(1 + k) = E0(1 + k)2. (539)

This leads to the law

En = E0(1 + k)n, (540)

where E0 is the initial (injection) energy of the particle. In addition, suppose that the

particle has a certain probability of escapingi each encounter is p, so the probability P of

remaining after n encounters is

P = (1− p)n. (541)

To reach a certain energy E, we need the following number of encounters

E = E0(1 + k)n ⇒ (1 + k)n =
E

E0

, (542)

n =

ln

(
E

E0

)
ln(1 + k)

. (543)

If one is interested in the fraction of particles which reaches energies higher than E,
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N α
∞∑
m=n

(1− p)m =
(1− p)n

p
, (544)

which can be rewritten as

(1− p)n

p
= p−1(1− p)

ln

(
E

E0

)
ln(1 + k) ⇒ N α p−1

(
E

E0

)−γ
, (545)

Following our main reference [17], we define the coefficient γ by

γ = ln

(
1

1− p

)
/ln(1 + k). (546)

Recall that

ln(1 + x) ≈ x, (547)

and we write

γ ≈ p

k
. (548)

Finally, we introduce one more parameter: the characteristic time. It is plausible to

assume that the probability of escaping is given by

γ ≈ p

k
=

1

k

Tcycle
Tesc

, (549)

where we have Tcycle as the characteristic time for a cycle and Tesc the characteristic time

it takes for a particle to escape. As we can see, the Fermi engine leads to a power law

spectrum of energies. There are other cases and generalizations of this model, and they

can be found at [17]. The main disadvantages are the amount of time it takes to reach

higher energies, and when such energies are reached, it can be hard to account for energy

losses.

Another general argument is known as the Hillas condition, of great interest for cosmic

ray physics. Suppose that we have a particle of charge q is moving in a magnetic field,
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in a relativistic regime. The Larmor radius is given by

rl = 1.08E/qB⊥, (550)

where B⊥ denotes the component of the field perpendicular to the velocity in microgauss.

The size L of the acellerating reagion must be greater than [68].

L > 2rL ∼ 2E15/BµG, (551)

with the energy given in 1015 eV.

Particles can also be accelerated in more sudden ways, such as in phenomena like

GRB’s. These kind of sources can accelerate particles to extremely high energies, but

there are a few problems. Since this is a high energy density environment, energy losses

can occur, and it’s hard to obtain a power law spectrum due to the complexity of the

events.

7.2 Proton-proton, proton-photon interactions

The main production mechanisms of neutrinos in astrophysical sources come from

proton-proton collisions and proton-photon interactions. Fermi engine and accretion are

(very likely) to be the main mechanisms of producing high energy protons, as the gas

moves and heats driven by the source. On the other hand, in events like gamma ray bursts

are the best to produce the high energy photons necessary for proton-photon interactions.

First, we consider inelastic collisions between protons which have been accelerated,

which are usually referred to as pp interactions. For an inelastic pp collision, we have:

p+ p→ π0, π±. (552)

and the decay of those particles generate γ’s and ν’s. In these reactions, charged and neu-

tral pions are produced in similar numbers. The decay of these pions produce neutrinos

and gamma rays (this will be explored in detail in the next section), and this connection

leads naturally to the multi messenger approach.
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According to [69], the pion emissivity per unit volume (the units are

GeV−1s−1cm−3) [70],

qπpp =

∫
dE nfpcNπ

dσpp(Eπ, E)

dE
, (553)

where n is the density of protons in the target, fp is the proton spectrum,

fp =
dNp

dE
GeV−1cm−3, (554)

Nπ is the pion multiplicity. We also have the differential cross section in the integral. If

we make the approximation

dσpp ≈ σppδ(Eπ −KpE/Nπ), (555)

with

σpp ≈ 30mb, (556)

for the proton-proton inelastic cross section on TeV energies on the laboratory frame,

Kp ≈ 0.4, (557)

for the inelasticity and

Nπ ≈ 15. (558)

This gives

qπpp ≈ nc σpp
N2
π

Kp

fp

(
NπEπ
Kp

)
. (559)

About 1/3 of the energy of the protons goes into each of the charged and neutral

pions. If the source is not too dense, the pions are allowed to decay without interacting

with other particles. Each of the neutrinos that come from the decay gets 1/4 of the
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parent pion (we will detail the energetics analysis soon), and this gives

qνpp ≈
1

4
× 2

3
× 3qπpp(4Eν) =

1

2
qπpp(4Eν). (560)

Finally,

dΦ

dEν
=

∫
dL qνppGeV−1s−cm−2. (561)

Note that the integral above is calculated over the source spatial extension.

It is important to mention that the interaction between a proton and a high energy

photon can also lead to the production of charged and neutral pions, which will decay

into neutrinos. The cross section analysis is similar to the one presented above, with a

few adjustments. First, we need to specify the photon spectrum (blackbody, power law

from emission and so on). It is also necessary to make σpγ ≈ 120 µb, Kp ≈ 0.3, Nπ ≈ 3

[70].

7.3 Particle decays

In this section, we will provide and overall discussion about decays of particles com-

monly produced by proton-proton and proton-photon interaction. Due to large number

of reactions we will look at, we will not provide a very detailed derivation (such as a pre-

cise calculation of lifetimes, branching ratios and so on), which can be found in standard

textbooks, such as [8].

We begin with the decay of charged pions, the most common process tho produce

muon neutrinos and antineutrinos. The charged pions are hadrons composed by the

following combination of quarks and antiquarks:

π+ = ud̄, π− = dū. (562)

and they have a mass of 139.6 MeV and a mean lifetime of 2.6× 10−8s. The decay of π±

is mediated by the boson W±, a weak interaction process.

The main decay mode of the charged pion is into muons and muon neutrinos,
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π+ = µ+ + νµ, (563)

π− → µ− + ν̄µ, (564)

with a branching fraction of 0.999877. The pions can also decay into electrons,

π+ → e+ + νe, (565)

π− → e− + ν̄e, (566)

with a branching fraction of 0.000123. The reason for such a difference in the branching

ratios is due to helicity supression. Note that the tau mass is 1776.82 MeV (and the

lifetime is 2.9 × 10−13s), while the muon has mass 105.7 MeV and the electron 0.511

MeV. That’s why the decay of the pion does not goes to tau.

To understand the statement of the paragraph above, let’s take a look at the decay

on the pion rest frame, for π−. The pion has spin zero, what implies that the spins of the

products must be opposite. In addition, one of the products of the decay is a antineutrino

and recall the V-A structure of the Weak interaction, which only couples right-handed

chiral antiparticles. So, there is consistency here. The problem is that the neutrino is

nearly massless and therefore relativistic, and therefore is in a righ-handed helicity state.

In order to conserve angular momentum, the muon must be a right-handed helicity state.

However, the Weak interaction only couples to left-handed chiral particles. Thus, we

need to study the relationship between a right-handed helicity state and a left-handed

chiral one. We will do so by using a projection. The right-handed helicity solution to the

Dirac equation is given by
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ψ↑ = N



cos(θ/2)

eiφsin(θ/2)

| ~p |
E +m

cos(θ/2)

| ~p |
E +m

eiφsin(θ/2)


,

and we project this into right and left handed chiral solutions.

ψ↑ = PLψ
↑ + PRψ

↑, (567)

with

PL =
1

2
(1− γ5), PR =

1

2
(1 + γ5), (568)

what gives

PLu↑ =
1

2
N

(
1− | ~p |

E +m

)


cos(θ/2)

eiφsin(θ/2)

−cos(θ/2)

−eiφsin(θ/2)


=

1

2
N

(
1− | ~p |

E +m

)
ψL,

PRu↑ =
1

2
N

(
1 +

| ~p |
E +m

)


cos(θ/2)

eiφsin(θ/2)

cos(θ/2)

eiφsin(θ/2)


=

1

2
N

(
1− | ~p |

E +m

)
ψR.

Note that in the relativistic limit when the energy is much greater than the mass and

E ≈| ~p |, we have

~p

E +m
→ 1⇒ ψ↑ = ψR. (569)

Now, we see that the right-handed helicity state has a left handed chiral component

proportional to
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1

2

(
1− ~p

E +m

)
=

m

mπ +m
, (570)

where the equality above comes from the study of the pion decay on its rest frame, and

m is the mass of the product. Now, when we look at the possibilities we have, the mass

of the muon and the electron, we see that the mass of the electron is much smaaller than

the mass of the pion (the muon has mass 105.7 MeV and the electron 0.511 MeV), so the

term

m

mπ +m
, (571)

is very small, and the decay into the electron is very suppressed.

If we have a charged particle that decays into a muon, we still have another reaction

to consider: the decay of the muon itself,

µ− = e− + ν̄e + νµ, (572)

µ+ = e+ + νe + ν̄µ, (573)

which has a lifetime of 2.1969811± 0.0000022 µs. Other decays are forbidden by lepton

flavour conservation.

Now, we turn to the energetics of the pion decays [71]. Consider, for instance, π− and

define

f =

(
mµ

mpi

)2

, (574)

and the average energy for the muon neutrino that comes straight from the decay is

〈Eπ
νµ〉 =

(1− f)Eπ
2

≈ 0.22Eπ, (575)

and for the muon,
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〈Eπ
µ〉 =

(1 + f)Eπ
2

≈ 0.78Eπ. (576)

When the muon decays, the νµ takes 1/3 of the energy of the muon,

〈Eµ
νµ〉 =

〈Eπ
µ〉

3
=

(1 + f)Eπ
6

= 0.26Eπ, (577)

and we say that each neutrino that comes out of the decay gets 1/4 fo the energy of the

parent pion.

In the neutral pion decay,

π0 → γ + γ, (578)

each photon carries half of the energy of the parent neutral pion.

We can also consider the results of photon-proton interactions. In those interactions,

if the energies are geat enough, one can excite a ∆+ resonance. From those resonances,

the one which has the largest cross section and is of greater importance to us is the ∆+,

composed of two up quarks and one down (just like the proton). Its mass is 1232 MeV,

and it has the decay modes

∆+ → π+ + n0, π0 + p+, (579)

and the pions contribute to the neutrino production. Note that this reaction can occur

in an astrophysical source, such as a GRB, or in space through the interaction between

a cosmic ray and the Cosmic Microwave Background.

7.4 On the astrophysical flavor ratio

As we have already discussed, neutrinos oscillate as they travel away from their source.

From what we have discussed in this chapter, we expect the flavor ratio at the source to

be
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(νe : νµ : ντ ) ≈ (1 : 2 : 0). (580)

We know that δm2 is somewhere on the range 10−3 to 10−5eV2 . Also, we are talking

about distances on the order of kiloparsecs (1kpc ≈ 3.1×1019m), so the argument on the

sine functions that describe the transition probability take huge values, on the order of

109 to 1011.

If we look at the results from the neutrino oscillations in the Electroweak Physics

chapter, we can see that the probability of detecting the flavor α is given by

Pνα =
∑
j

U2
αj

∑
β

rβU
2
βj, (581)

where r denotes a flavor ratio,

re : rµ : rτ ,
∑
α

rα = 1, (582)

It can be shown that any initial flavor ratios that contains one third of the initial neutrinos

as electron neutrinos will arrive on Earth with an equipartition of the three flavors. Thus,

the observation of tau neutrinos and such flavor ratios is a strong indicator of astrophysical

neutrino production.

7.5 Solar and atmospheric neutrinos

In this section, we will make some comments on neutrinos that do not come from

astrophysical sources, beginning with solar neutrinos and then moving to neutrinos pro-

duced at the atmosphere from cosmic rays. We will mainly follow [8] here.

The thermonuclear reactions that take place in the solar core are an extraordinary

source for the production of neutrinos of energies on the order 1 MeV. Those neutrinos

travel and reach Earth, with a flux of 6×1010cm−2s−1 and they possess a very small cross

section, making detection difficult. Many experiments have dedicated themselves to the

study of such neutrinos, from Homestake (first detection of solar neutrinos, experiment

started in 1970) to the Super-Kamiokande and SNO experiments, which provided high
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precision measurements (and actually led to the Nobel Prize of 2015 for the neutrino

oscillations).

Neutrinos can also be produced on the atmosphere by interactions of cosmic rays.

as those high energy particles come, they interact with molecules on the atmosphere;

this create showers and the decays of those secondary particles, such as muons, generate

neutrinos. It is important to mention that this flux come from all directions in space,

and is mainly used in the IceCube Collaboration for callibration (see the The IceCube

experiment chapter for mored details). In addition, it is important to mention that

atmospheric neutrinos play a crucial role in the study of flavor oscillations, since muon

neutrino oscillation is the simplest explanation to many features observed in atmospheric

neutrino data [72]

7.6 Neutrinos and Cosmic Rays

In this section we present some topics that help to stablish the connection between

neutrinos and other observables. The actual use of this result and how those different

pieces of the puzzle look when put together will be presented in Part V.

7.6.1 The Waxman - Baccal bound

In their work [41], Eli Waxman and John Bahcall showed that a model independent

upper bound to the high energy neutrinos based on cosmic ray observations, which applies

in particular for Active Galactic Nuclei (AGN) and Gamma Ray Bursts (GRB’s). It is

an upper bound to neutrino fluxes from pγ interactions for sources that are optically thin

to those reactions .According to the authors, we have a model independent upper bound

of E2Φν < 2× 10−8GeV/cm2ssr to the intensity of the high energy neutrinos in the type

of sources we mentioned. Probably the most striking feature of their results is its ridigity,

in the sense that the bound is immune to the consideration of evolutionary effects of the

sources or magnetic field scenarios.
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7.6.2 γ-rays and Fermi - LAT

As it was already seen in this chapter, there is an intrinsic connection between gamma

rays and high energy neutrinos produced by pion decays. Therefore, it is of great im-

portance to us to better understand gamma ray production and how they are detected.

First, note that gamma rays can be produced in essentially two ways: hadronic origin

(the decays and reactions we already mentioned) and leptonic origin, which is by pure

leptonic phenomena such as inverse Compton scattering. We will begin by exploring the

hadronic origin of gamma rays, then look at the leptonic processess and comment on

detection and measurement.

Decay of π0 occur at sites where such particles are produced, where the astrophys-

ical sources provide acceleration mechanisms to produce not only proton collisions but

also baryonic cosmic rays. Since such cosmic rays are observed (in experiments like the

Pierre Auger Observatory), we can assume that some gamma ray sources operate through

hadronic means (for a more detailed analysis, see [67].

In addition, as cosmic rays propagate, they can interact with the CMB background

photon through inverse Compton scattering. This is not just an energy loss mechanism

for the cosmic rays, but it also leads to production of secondary particles, such as gamma

rays and pions, which ultimately lead to neutrino production in a process called GZK

effect [42]. The secondary particles produced decay to produce neutrinos, known as

Berezinsky-Zatspein neutrinos (the BZ flux). The accumulation of such neutrinos over

cosmological time is known as the BZ or often the cosmogenic neutrino flux. Thus, it is

natural to ask if high energy cosmic rays (around 1018 eV) can produce neutrinos with a

spectrum that agrees with obeservational data [44], but this is not the case [45].

When it comes to detection, this dissertation is mostly based on the data from the

Fermi Large Area Telescope. It is a high energy gamma ray telescope that detects photons

with energies ranging from a few MeV to about 300 GeV. It is the main scientific instru-

ment of the Fermi Gamma-ray Telescope. Its measurements will be of great importance

to impose bounds and constrain our models.
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8 The IceCube experiment

8.1 An overview of the experiment

IceCube is a neutrino detector located at the South Pole, composed of an array of

photosensors buried in the ice of Antartica. As the high energy neutrinos come to Earth,

they interact with the water molecules of the ice as we discussed in the previous sections,

and the resulting Cherenkov light emitted by secondary charged particles is observed.

The basic detection unit of IceCube is the DOM, the Digital Optical Module.This

technology was developed when the AMANDA collaboration was going on, which had as

one of its goals to test the concept behind this kind of experiment. They are glass spheres

which contain a photomultiplier and auxiliary electronics. The spheres are connected to

each other in strings, and deployed in vertical holes that are drilled in the ice. Each string

has 60 DOM’s, and each sphere is 17 meters apart in the string. The DeepCore array is

made up of a more densely spaced array of strings that are below 2100 m where the ice is

the cleanest and also contains better photomultipliers. In addition to that, IceCube has

a detection system at the surface, called IceTop, which is made of frozen water tanks for

the purpose of detecting cosmic rays and showers originated by them. They also work

detecting Cherenkov light.

8.1.1 Next generations and upgrades

Due to the sucess of IceCube, there are already plans about upgrades on the experi-

ment [269]. The next generation of the IceCube detector would be an extended array of

detection modules covering an area of 10km3. It would allow unprecedent sensitivity and

angular resolution on the PeV scale and above. The increased event rate would greatly
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increase the potential for point source detection and new discoveries.

Recently, IceCube and ANTARES, another neutrino observatory performed a follow-

up search of neutrinos [39] for the event detected by the LIGO collaboration recently, the

gravitational waves emitted by the merging of two black holes[38]. Upgraded detectors

and refined techniques would definetely lead to a new era of multi-messenger searching.

8.2 Cherenkov radiation

Cherenkov light is the electromagnetic analogue of a sonic boom, which occurs when

an object travels faster than the speed of sound in a certain medium (also known as

”breaking the sound barrier”). In our situation, when a charged particle travels faster

than the speed of light in a certain medium, radiation is emmited, with the wavefront of

the emmited light having the format of a cone.

The cone opening angle θ is given by

cosθ =
1

nβ
< 1⇒ β =

v

c
>

1

n
, (583)

where n is the refraction index of the medium. For ice, n ≈ 1.33. There is a lower

limit for the momentum of the particle; it it moves slower than it, the radiation is not

emmited. This limit is dictated by the constraint of the equation above; on the lab frame,

the magnitude of the 3-momentum of the particle is

p = γmc = mc
1√

1− β2
= mc

1√
1− (1/n)2

. (584)

The spectrum of the Cherenkov radiation is given by the Frank-Tamn formula [37]. Nu-

clear reactors, which exhibit a blue glow, are examples of systems that emmit Cherenkov

radiation.

8.3 Cross sections for interactions at the detector

In this section we will present and discuss the cross sections for the neutrino inter-

actions that occur at the IceCube detector for different energy ranges. Due to number
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of different reactions and subtleties in the analysis, we will not provide a very detailed

explanation or calculation for each one of them, but references will be given for the in-

terested reader. Our focus will be on the energy dependence of the cross sections, and

what reactions tend to occur at certain energy ranges.

Elastic and quasielastic scattering7 are the relevant processess for the energy range of

solar neutrinos (. 100 MeV). The reaction

ν̄e + p→ e+ + n, (585)

which is called the inverse beta decay is particularly famous. This is how Reines and

Cowan detected neutrinos for the first time [36], it was the elementary reaction for Kam-

LAND and will remain the key process for upcoming oscillation neutrino experiments.

Other reactions are also possible (and in fact were used in studies of the solar neutrinos

[8]), even though the inverse beta decay has the dominating cross section.

When we increase the energy leaving the MeV and reach the GeV scale, we still have

quasielastic reactions of the form [8]

νl + n→ l− + p, (586)

ν̄l + p→ l+ + n, (587)

but some resonances also become acessible,such as the ∆(1232) resonance we already

discussed, and charged and neutral pions can be produced,

νl +N → π +N ′. (588)

In this energy range, the total cross section satisfy [52].

σ(νN) = 0.677× 10−38 cm2Eν

GeV
, (589)

7Quasielastic scattering is the name of a particular case of inelastic scattering where energy transfers
are small compared to the incident energy of the scattered particles
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σ(ν̄N) = 0.334× 10−38 cm2Eν

GeV
. (590)

Finally, when we go beyond 100 GeV we enter at the high energy scale, the one of

greatest interest for IceCube. At high energies the neutrino scatters from the quarks

themselves, and this breaks the nucleon creating a hadronic shower. This is called the

deep inelastic scattering regime,

νl +N → l +N ′, (591)

and the CC deep inelastic cross section for an isoscalar target is given by

dσ

dx dy
=

2G2
FMEν
π

 1

1 +
G2

m2
W


2

[xq(x,Q2) + xq̄(x,Q2)(1− y2)], (592)

where

Q2 ≈ 4EνElsin
2 θl

2
, (593)

x =
Q2

2MN(Eν − El)
,

Q2

(s−M2
N)x

, s ≈ 4EνElsin
2 θl

2
, (594)

and q(x,Q2), q̄(x,Q2) are quark distribution functions [35]. For the NC cross section,

dσ

dx dy
=

2G2
FMEν
π

 1

1 +
G2

m2
Z


2

[xq′(x,Q2) + xq̄′(x,Q2)(1− y2)] (595)

note that the distributions must be changed [34] [33].

8.4 Neutrino tracks

The most common neutrinos that IceCube detects are atmospheric neutrinos, and

they came from all directions. As cosmic rays come towards Earth and interact with the
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atmosphere, showers occur and muons and neutrinos are produced, travelling across the

atmosphere and Earth itself being detected at IceCube from all angles. They are both

the background and the source for calibration of the equipment. The energy spectrum

goes as E−3, becoming steeper, E−3.7 for E >> 1TeV; thus, it can be used for calibration

up to TeV and beyond.

The astrophysical neutrinos are the ones of interest to us. Their energy, close and on

the PeV scale is fortunately well above the atmospheric background, and they have very

characeristic event signatures on the detector. However, as the energy of the neutrinos

gets in this range, the Earth becomes more opaque to them and it becomes necessary to

use events from neutrinos that come from horizontal or downgoing directions. Due to the

planet’s opacity, there is a supression on upgoing neutrinos.

Neutrinos of different flavor possess different event signatures of the detector, and we

will discuss them now. Recall that the DIS produces a lepton related to the incident

neutrino. The propagation of this lepton (and other compoents of the shower) produce

Cherenkov light as well as the products of the decay of the lepton in question, in the case

it is a muon or a tau lepton. There are many different possible topologies and subtleties

concerning them [31], [30], [29], so we will focus on more general properties of these events

and signatures.

We begin by looking at the electron neutrino, νe. When a high energy electron

neutrino comes and interacts with the ice through DIS, an electron is created. As this

electron propagates, it will emmit a high energy photon through bremsstrahlung, and

the photon can become an electron-positron pair, which in turn will also propagate and

emmits new photons and so on. The result of this is a cascade of high energy photons,

electrons and positrons. Note that the recoilling nuclei after the DIS interaction will

produce a jet of particles, which will also turn into a shower. However, this kind of cascade

does not produce as much Cherenkov light as the electromagnetic cascade described

above, mainly because of the nature of the particles in the jet. They are heavier than

electrons, with a fraction of the energy in the form of binding, and the possible presence

of neutral particles like neutrons which do not emmit Cherenkov light. This kind of event
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has a good energy measurement but poor angular resolution (10o to 15o).

The next kind of event is the one related to muon neutrinos. The main difference

between this kind of event and the previous one is that once a muon is produced from the

first interaction it travels for a certain length losing energy in form of radiation. The result

of this is a track with good angular resolution (about 1o) but bad energy measurement.

Finally, we talk about tau neutrinos.This kind of neutrino can be detected in several

ways [30]. The main idea is that a tau neutrino interacts, and a tau lepton is produced.

Due to its huge mass (1776.82 MeV), it does not lose too much energy in the form

of radiation. The tau then decays, and the products of this decay create a cascade.

Depending on where the initial inetraction (the first DIS scattering) happens, one can

see a “lollipop” or a “double bang” shape on the detector. this happens for energies

above a few hundred TeV, when it becomes possibles to distiguish the two cascades.

Differently from muon and electron neutrinos, tau neutrinos can not be produced on

the atmosphere. Therefore, their detection is a smoking gun for astrophysical origin, but

the direct detection of tau neutrinoshasn’t occured yet, but it doesn’t seem to contradict

the hypothesis of democratic flavor ratio at the Earth [28].

Before we end this section, it is important to make a brief comment on antineutri-

nos. From the way that IceCube makes the detection (based on the light emmited from

secondary particles), it can’t essentially tell the difference between neutrinos and antineu-

trinos, and that’s the reason we have been referring to only “neutrinos” in this section.

The main signature for an antineutrino detection would be a Glashow resonance.

8.5 Event maps

The IceCube has observed a diffuse flux of neutrinos with energies on the order of

TeV and above with 5.7σ significance, and an atmospheric origin for these high energy

events has practically been discarded, with three events possessing energy above 1 PeV

(they were called Bert, Ernie and Big Bird, and their energies are 1.0, 1.1 and 2.2 PeV

respectively). Topics such as energy spectrum, correlation with sources and others will

be extensively studied in the last chapters.
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Figure 12: IceCube event locations [27]. The contains 27 shower events (circles) and 8
track events (diamonds) reported by the IceCube Collaboration. The three
events with highest energy are labelled as 1, 2 and 3. The surrounding circles
denote the angular resolution of the events, while the shaded band delimits
the Galactic plane.
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9 Looking for high energy neutrino sources

Several explanations have been proposed to explain the origin of IceCube’s events

[285]. Interestingly, a priori predictions for the diffuse ν flux from FRI radiogalaxies [286]

and starbursts [287] provide a suitable α and normalization for the ν flux while simulta-

neously retaining consistency with a cutoff at Eν ∼ 3 PeV [288]. Other potential sources

that can partially accommodate IceCube data include gamma-ray bursts [289], clusters

of galaxies [290] (see however [291]), and active galactic nuclei [292]. However, the iden-

tification of extragalactic neutrino point-sources from a quasi-diffuse flux is challenging

due to the (large) atmospheric neutrino background [293].

9.1 Astrophysical sources: Galactic microquasars

On the basis of existing data a significant contribution from Galactic sources cannot

yet be excluded [294, 295]. Searches for multiple correlations with the Galactic plane have

been recently reported by the IceCube Collaboration [276]. When letting the width of the

plane float freely, the best fit corresponds to ±7.5◦ with a post-trial chance probability

of 2.8%, while a fixed width of ±2.5◦ yields a p-value of 24%. In particular, some of

the events seem to cluster near the Galactic center [296], which has been whimsically

described as a neutrino lighthouse [297]. Indeed, a particularly compelling source of some

of these neutrinos could be LS 5039 [276]. Figure ?? contains a display of the shower

and track events reported by the IceCube Collaboration [276]. Using these data, the

Collaboration conducted a point source search using an un-binned maximum likelihood

method described in [298]. For both the clustering and point source search, the number of

estimated signal events, xs, is left as a free parameter and the maximum of the likelihood

is found at each location. For the point source search, the most significant source is the
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binary system LS 5039, with a value of xs = 4.9, and a corresponding p-value of 0.002.

Of course there are many sources in the sky; whether this one turns out to be a good

candidate, time will tell.

In summary, though the clustering is not statistically significant one cannot rule out a

Galactic origin for some of these events. Motivated by this fact we perform a generalized

calculation of the flux expected from various source distributions, taking account of the

location of the Earth in the Galaxy. In particular, we reduce the problem to two specific

parameters, the distance to the nearest source and the overall population density. LS 5039

has been discussed in the literature as potential high energy neutrino emitter [299]. We

consider this source as specific example and assume it typifies the population of Galactic

microquasars (µQSOs).8 We generalized the argument such that it can be applied to

various source populations. First we bracket the realm of plausibility and consider a

uniform distribution and an exponential distribution peaked at the Galactic center. For

illustrative purposes, we consider several conceivable different distances to the nearest

source. After that we turn our attention to the interesting possibility of µQSOs for which

the overall distribution of surface density in the Galaxy has a peak at galactocentric radii

5− 8 kpc [302, 303].

The layout of this discussion is as follows. First, we revisit the model presented in [299]

in order to better estimate the expected neutrino flux, especially in the PeV region, and

then we compare the properties of LS 5039 with other Galactic microquasars, showing

that LS 5039 provides a reasonable lower bound on the power of this type of source. In

The next step is to estimate the contribution of Galactic sources to the overall diffuse

neutrino flux on the assumption that LS 5039 typifies the population. By comparing this

estimate with IceCube data we find the minimum neutrino production efficiency required

to dominate the spectrum. Finally, we employ constraints from γ-ray observations to

bolster our hypothesis. We also address the relevance of our previous finding [295] that

a spectral index of 2.3 is consistent with the most recent IceCube spectral shape as well

8µQSOs are a sub-class of X-ray binary systems that produce collimated outflows observed as non-
thermal radio structures [300]. This particular morphology probably originates in relativistic jets
launched from the inner parts of accretion disks around stellar mass black holes or neutron stars [301].
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as current bounds on cosmic ray anisotropy.

9.1.1 IceCube neutrinos as the smoking ice of LS 5039 engine

LS 5039 is a high-mass X-ray binary (HMXB) system that displays non-thermal per-

sistent and variable emission from radio frequencies to high-energy (HE), Eγ > 100 MeV,

and very-high-energy (VHE), Eγ > 100 GeV, gamma rays. The system contains a bright

ON6.5 V((f)) star [304, 305] and a compact object of unknown nature. This degenerate

companion has a mass between 1.4 and 5 M� [306]. The orbit of the system has a period

of 3.9 days and an eccentricity around 0.35 [306, 307, 308]. The distance to the source has

recently been updated to 2.9±0.8 kpc [309]. At the apastron the orbital separation of the

binary system is 2.9× 1012 cm and becomes 1.4× 1012 cm at periastron [306]. Variability

consistent with the orbital period in the energy range 100 MeV . Eγ . 300 GeV was

detected by Fermi [310]. The system is also a TeV emitter, with persistent, variable,

and periodic emission, as detected by H.E.S.S. [311, 312]. The overall luminosity in the

frequency band keV . Eγ . GeV is L ∼ 1035 erg s−1 [313].

Whether the HE/VHE gamma rays are a of hadronic or leptonic origin is a key issue

related to the origin of Galactic cosmic rays. In all gamma-ray binaries, the nature of

the compact object is fundamental for understanding the physical processes involved in

the particle acceleration that is responsible for the multi-wavelength emission. If the

compact object is a black hole, the accelerated particles would be powered by accretion,

and produced in the jets of a µQSO. On the other hand, if the compact object is a young

non-accreting pulsar, the particle acceleration would be produced in the shock between

the relativistic wind of the pulsar and the stellar wind of the massive companion star.

The detection of elongated asymmetric emission in high-resolution radio images was in-

terpreted as mildly relativistic ejections from a µQSO jet and prompted its identification

with an EGRET gamma-ray source [313, 314]. However, recent Very Long Baseline Array

observations [315] show morphological changes on short timescales that might be consis-

tent with a pulsar binary scenario [316, 317, 318]. On the other hand, no short-period

pulsations were observed either in radio [319] or X-rays [320] definitively demonstrating
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the compact object to be a pulsar. New IceCube data will clarify this situation, as the

only plausible high energy neutrino emission mechanism requires a compact object pow-

ering jets.

Figure 13: A sketch of the binary system LS 5039.

Simultaneous production of γ’s and ν’s generally requires two components: (i) an

effective proton accelerator, up to E ≈ 16Emax
ν and beyond; (ii) an effective target

(converter). The maximum observed neutrino energies then require proton acceleration

up to at least E & 20 PeV. The most likely site for particle acceleration in LS 5039 is

the jet, which with a speed v = 0.2c and a half-opening angle θ . 6◦ extends out to 300

milliarcsecond (mas), that is about 1016 cm [314]. Within the inner parts of the jet, with

a radius Rjet ∼ 109 cm, a magnetic field B & 105 G could be sufficient to boost protons up

to very high energies. The maximum proton energy is determined by the Hillas condition

rL ≤ Rjet, which gives

Emax . 30

(
Rjet

109 cm

) (
B

105 G

)
PeV , (596)
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where rL is the Larmor radius. A value compatible with this maximum energy has

been obtained in an independent calculation [321]. The accelerated protons can interact

efficiently with the ambient cold plasma throughout the entire jet. In what follows we

assume that the base of the jet is located close to the inner parts of the accretion disk,

that is, the jet axis z is taken normal to the orbital plane, as shown in Fig. ??. Here,

z0 ∼ 30RS, where

RS ' 3× 105

(
MBH

M�

)
cm (597)

is the Schwarzschild radius. If the magnetic field drops as B ∝ z−1, the condition of the

confinement of protons in the jet, rL ≤ R implies Emax ∝ Bz=constant, where R = θz

is the radius of the jet at a distance z. Thus, one may expect acceleration of protons to

the same maximum energy Emax over the entire jet region. However, if there is a faster

drop of B with z, the protons at some distance zt from the compact object will start

escaping the jet. If this happens within the binary system, i.e. zt ≤ 1012cm, protons

interacting with the dense wind of the optical star will result in additional γ-ray and

neutrino production outside the jet.

If the jet power is dominated by the kinetic energy of bulk motion of cold plasma, the

baryon density of the jet njet can be estimated from the jet power,

Ljet =
π

2
R2

jet(z)njet(z)mpv
3 . (598)

The efficiency of γ-ray production in the jet is

ργ =
Lγ
Lp

= σppfπ

∫ zt

z0

njet(z)dz ≤ 1 , (599)

where Lγ is the luminosity of VHE γ-rays and Lp is the power of accelerated protons.

Here, σpp ≈ 40 mb is the cross-section of inelastic pp interactions, and fπ ≈ 0.15 is

the fraction of the energy of the parent proton transfered to a high energy γ-ray [322].

Given the recent estimate of the black hole mass in LS 5039 M = 3.7+1.3
−1.0M� [306], we

set z0 ' 3 × 107 cm. For the profile of the number density, we adopt a power law form
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njet = n0(z0/z)−s, where s = 0 for a cylindrical geometry, s = 2 for a conical jet, and

s = 1 for the intermediate case. Expressing the acceleration power of protons in terms of

the total jet power, Lp = κLjet, one finds the following requirement for the jet power,

Ljet ≈ 2× 1037
L

1/2
γ,34(v/0.2c)3/2√
C(s)κ/0.1

erg s−1 , (600)

where Lγ,34 = Lγ/1034 erg s−1 and κ is the acceleration efficiency. The parameter

C(s) characterizes the geometry/density profile of the jet: for s = 0, 1, 2, we find

C(s) = zt/z0, ln(zt/z0), and 1, respectively. The cylindrical geometry provides the high-

est efficiency of γ-ray production. However, since Lγ . 1/30Ljet (assuming ≈ 10%

efficiency of proton acceleration, and taking into account that the fraction of energy of

protons converted to γ-rays cannot exceed 30%) the γ-ray production cannot be extended

beyond zt ∼ 104z0 ∼ 3 × 1011cm. The conical geometry corresponds to the minimum

efficiency of γ-ray production, and thus the largest kinetic power of the jet. In this case

the bulk of γ-rays are produced not far from the base. For s = 1, γ-rays are produced in

equal amounts per decade of length of the jet, until the jet terminates.

If γ-rays are indeed produced in pp interactions, one would expect production of high

energy neutrinos at a rate close to the γ-ray production rate. However, since γ-rays are

subject to energy-dependent absorption, both the energy spectrum and the absolute flux

of neutrinos,

φν(Eν) ' 2 φγ(Eγ) exp[τ(Eγ)], (601)

could be quite different from that of the detected γ-rays, where Eν ' Eγ/2. The optical

depth τ(E) depends significantly on the location of the γ-ray production region, and

therefore varies with time if this region occupies a small volume of the binary system.

This may lead to time modulation of the energy spectrum and the absolute flux of TeV

radiation with the orbital period [323]. Moreover, the γγ interactions generally cannot be

reduced to a simple effect of absorption. In fact, these interactions initiate high energy

electron-photon cascades, driven by inverse Compton scattering and γγ pair production.
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The cascades significantly increase the transparency of the source. The spectra of γ-rays

formed during the cascade development significantly differ from the spectrum of γ-rays

that suffer only absorption.

To model the electromagnetic cascade developed in the plasma we adopt the method

described in [324]. In our calculations we include the three dominant processes driving the

cooling of the electromagnetic cascade: photon-photon pair production, inverse Compton

scattering, and synchrotron radiation from electrons. Because of the orbital motion, both

the absolute density and the angular distribution of the thermal radiation of the star

relative to the position of the compact object vary with time. We take into account the

effect induced by the anisotropic (time-dependent) distribution of the target photons on

the Compton scattering and pair-production processes [325]. We normalize the cascade

spectrum of photons to the flux reported by the H.E.S.S. Collaboration in the TeV energy

range [311, 312]. Interestingly, if pion production is mostly dominated by collisions close

to the base of the jet (i.e. z . 108 cm) then the resulting flux of γ-rays can marginally

accommodate observations in the GeV-range [310, 326]. However, if pion production

takes place well above the base of the jet (z = 1013 cm) the flux of GeV-photons becomes

about an order of magnitude smaller. These two extreme situations, which are shown in

Fig. 25, provide an upper and a lower bound on the resulting neutrino flux

φν(Eν) = ζ E−2
ν GeV−1 cm−2 s−1 , (602)

where 1.8 × 10−9 < ζ < 1.6 × 10−8. The lower value of ζ is in good agreement with

the results of Ref. [328].9 It is notable that while our results are ultimately derived from

demanding consistency between neutrino and photon data, the results in Ref. [328] are

derived from assumption on source parameters. For a source distance d ' 3 kpc, the flux

range given in (602) corresponds to an integrated luminosity per decade of energy,

9The two analyses assume the same fiducial value for κ. Good agreement is achieved by taking the
fiducial value for the fraction of the jet kinetic energy which is converted to internal energy of electrons
and magnetic fields.
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L
LS 5039

ν = 4πd2

∫ E2

E1

Eν φ(Eν) dEν

= 4π

(
d

cm

)2

ζ ln 10 GeV s−1, (603)

in the range 7.0× 1033 erg s−1 . L
LS 5039

ν . 6.4× 1034 erg s−1.

Figure 14: The dashed curves represent the time averaged γ-ray spectra of LS 5039 after
cascading in the anisotropic radiation field of the normal companion star. The
curves are normalized to reproduce the observed γ-ray flux by H.E.S.S. in the
TeV range [311, 312]. If pions are produced near the base of the jet, the
γ’s produced through π0 decay can trigger cascades in the plasma, yielding a
photon flux which can marginally accommodate EGRET [326] and Fermi [310]
data. The dot-dashed horizontal lines indicate the accompanying neutrino
flux. All curves are averaged over the orbital period taking into account data
on the geometry of the binary system [306]. The cross-hatched area indicates
the 90% upper limit on the flux from LS 5039 reported by the ANTARES
Collaboration [327].

Herein we have assumed the usual Fermi injection spectral index of α = 2. The

spectral index of γ-radiation measured by H.E.S.S. varies depending upon the orbital

configuration, reaching a maximum value of 2.53 [311, 312]. In the next two sections we

will assume the “traditional” spectral index. In Sec. ?? we comment on the effect of a

steeper spectrum.
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Determining whether this analysis can be straightforwardly generalized to all sources

in the Galaxy depends on whether neutrino emission from LS 5039 can typify the popu-

lation of µQSOs. It is this that we now turn to study.

9.1.2 Generalities of the microquasar population in the Galaxy

The most recent catalogues show 114 HMXBs [329] and about 130 low-mass X-ray

binaries (LMXBs) [330]. The INTEGRAL/IBIS nine-year Galactic plane survey, limited

to |b| < 17◦, contains 82 high-mass and 108 low-mass sources [331]. The sensitivity of this

survey is about 10−11 erg s−1 cm−2 in the 17-60 keV energy band, which ensures detection

of sources with luminosities . 1035 erg s−1 within half of the Galaxy (. 9 kpc from the

Sun) and . 5× 1035 erg s−1 over the entire Galaxy (. 20 kpc from the Sun); see Fig. ??

. The number of X-ray binaries in the Galaxy brighter than 2 × 1034 erg s−1 is thought

to comprise 325 HMXBs and 380 LMXBs [303]. These estimates may be uncertain by a

factor of approximately two due to our limited knowledge of the source spatial distribu-

tion, rendering them consistent with the observations from the surveys reported above.

Taken together this suggests an upper limit of µQSOs in the Galaxy of O(100) [332].

About twenty µQSOs have been discovered so far. An illustrative sample can be

found in Table 3. Note that the estimated jet luminosity of LS 5039 is relatively low,

implying that we can in principle use this source to estimate a lower bound on the neutrino

production efficiency required to be consistent with observation. Note also that the only

source with Ljet less than that for LS 5039 has been observed in bursting and quiescent

states. In Table 3 we quote the quiescent value which is about a factor of two lower than

for the case of bursting state [337].

A comparison among all IceCube events and the Galactic µQSO population is shown

in Fig. ??. Not surprisingly given the size of the localization error, the two PeV neutrino

events with arrival direction consistent with the Galactic plane can be associated with

µQSOs within 1σ uncertainties.

It appears that the impulse from supernovae explosions can eject a system from its
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Figure 15: Illustrative view of the surface density of HMXBs in the Galaxy. The red
points indicate positions of HMXBs. The dot-dashed and dashed curves show
the regions of the Galaxy, within which the INTEGRAL Galactic survey de-
tects all sources with luminosities > 1035.5 ergs−1 and > 1035 erg s−1.

original position in the disk into the halo. In fact a number of µQSOs have been observed

with very high velocities. For instance, XTE J1118-480 moves at 200 km s−1 in an

eccentric orbit around the Galactic Center [338]. Additionally, the position and velocity

of Scorpius X-1 suggest it is a halo object [339]. Such speedy objects are called runaway

µQSOs. LS 5039 qualifies as a such runaway µQSO with a velocity of 150 km s−1. Its

computed trajectory suggest it could reach a galactic latitude of ∼ 12◦. The IceCube

analysis search for multiple correlation in the Galactic plane favors latitudes less than

about ±7.5◦, which is not inconsistent with the latitude reached by runaway µQSOs.

The next to highest energy neutrino event is not in the Galactic plane. It is also inter-

esting to note that the position of this PeV event is within 10 degrees in the hottest spot

of IceCube search [340] for PeV γ-ray sources [341]. If it turns out that PeV photons and

neutrinos are generated at the same sites, then observation of coincidences implies these

sites must be within the Galaxy, given the short mean free path of PeV photons, which

is less than 10 kpc. Conceivably, this could be associated with an as-yet undiscovered

µQSO.

At about 2 kpc from Earth, there is another HMXB system with similar characteris-
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Table 3: Properties of µQSOs in the Galaxy.

Classification Name position (J2000.0) distance [kpc] Ljet [erg/s] Reference
HMXB LS I +61 303 (02h40m31.70s,+61◦13′45.6′′) 2 5.69× 1036 [328]
HMXB CI Cam (04h19m42.20s,+55◦59′58.0′′) 1 5.66× 1037 [328]
LMXB GRO J0422+32 (04h21m42.70s,+32◦54′27.0′′) 3 4.35× 1037 [328]
LMXB XTE J1118+480 (11h18m10.79s,+48◦02′12.3′′) 1.9 3.49× 1037 [328]
LMXB GS 1354-64 (13h58m09.70s,−64◦44′05.0′′) 10 3.62× 1037 [328]
LMXB Circinus X-1 (15h20m40.84s,−57◦10′00.5′′) 10 7.61× 1038 [328]
LMXB XTE J1550-564 (15h50m58.67s,−56◦28′35.3′′) 2.5 2.01× 1038 [328]
LMXB Scorpius X-1 (16h19m55.09s,−15◦38′24.9′′) 2.8 1.04× 1038 [328]
LMXB GRO J1655-40 (16h54m00.16s,−39◦50′44.7′′) 3.1 1.6× 1040 [328]
LMXB GX 339-4 (17h02m49.40s,−48◦47′23.3′′) 8 3.86× 1038 [328, 333]
LMXB 1E 1740.7-2942 (17h43m54.82s,−29◦44′42.8′′) 8.5 1036 − 1037 [334]
LMXB XTE J1748-288 (17h48m05.06s,−28◦28′25.8′′) 8 1.84× 1039 [328]
LMXB GRS 1758-258 (18h01m12.40s,−25◦44′36.1′′) 8.5 1036 − 1037 [335]
HMXB V4641 Sgr (18h19m21.63s,−25◦24′25.9′′) 9.6 1.17× 1040 [328]
HMXB LS 5039 (18h26m15.06s,−14◦50′54.3′′) 2.9 8.73× 1036 [328]
HMXB SS 433 (19h11m49.57s,+04◦58′57.8′′) 4.8 1.00× 1039 [328]
LMXB GRS 1915+105 (19h15m11.55s,+10◦56′44.8′′) 12.5 2.45× 1040 [328]
HMXB Cygnus X-1 (19h58m21.68s,+35◦12′05.8′′) 2.1 1036 − 1037 [336]
HMXB Cygnus X-3 (20h32m25.77s,+40◦57′28.0′′) 10 1.17× 1039 [328]

tics to LS 5039. LS I +61 303 has been detected at all frequencies, including TeV and

GeV energies [342]. Observations of persistent jet-like features in the radio domain at

∼ 100 mas scales prompted a classification of the source as a µQSO [343], but subsequent

observations at ∼ 1− 10 mas scales, covering a whole orbital period, revealed a rotating

elongated feature that was interpreted as the interaction between a pulsar wind and the

stellar wind [316]. More recently, evidence favoring LS I +61 303 as the source of a very

short X-ray burst led to the analysis of a third alternative: a magnetar binary [344].

This binary system has also been suspected to be a high energy neutrino emitter [345].

The source has been periodically monitored by the AMANDA and IceCube collabora-

tions [346]. The most recent analysis leads to a 90% CL upper limit on the neutrino

flux at the level E2
νΦ90(Eν) = 1.95 × 10−9 GeV cm−2 s−1 [347]. This implies that if we

were to consider LS 5039 as a standard neutrino source of the µQSO population then

γ’s and ν’s should be produced well above the base of the jet, without γ-ray absorption.

For such a case, the predicted neutrino flux is compatible with an independent analysis

presented in [296], which assumes the neutrino cluster arrives from the direction of the

Galactic center. Such a flux is also compatible with studies described in [285], which

also postulate a Galactic center origin, but with steeper spectral indices. Finally, we

stress that the predicted high energy neutrino flux that can typify the µQSO population

is about an order of magnitude below the 90% upper limit reported by the ANTARES
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Collaboration [327].

Figure 16: Comparison of IceCube event locations [276] with Galactic µQSOs in a Moll-
weide projection. The 27 shower events are indicated by circles and the 8
track events by diamonds. The solid stars indicate the 7 µQSOs classified as
HMXB and the outlined stars the 12 µQSOs classified as LMXB. The shaded
band delimits the Galactic plane.

In summary, if we assume the luminosity of LS 5039 truly typifies the power of a µQSO

then we should adopt as fiducial L
LS 5039

ν ≈ 1033 erg s−1, otherwise we will be inconsistent

with the IceCube limit on LS I +61 303. However, it is important to stress that the value

of L
LS 5039

ν we will adopt to typify the population is very conservative for far away sources,

as one can observe in Table 4. In closing, we note that though the IceCube bounds

are currently the most stringent, ANTARES has the potential to discover exceptionally

bright bursting sources in the Southern sky [348].

9.1.3 High energy Neutrinos from Galactic microquasars

Galactic µQSOs have long been suspected to be sources of high energy neutrinos [321].

In this section, we consider the overall contribution of these candidate sources to the

diffuse neutrino flux, assuming LS 5039 is the nearest source and typifies the µQSO
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Table 4: 90% C.L. upper limits on the squared energy weighted flux of νµ + νµ̄ in units
of 10−9 GeV cm−2 s−1.

Name E2
νΦ

IceCube
90%C.L. E2

νΦ
ANTARES
90%C.L. Reference

LS I 63 303 1.95 − [347]
Circinus X-1 − 16.2 [327]

GX 339-4 − 15.0 [327]
LS 5039 − 19.6 [327]
SS 433 0.65 23.2 [347, 327]

Cygnus X-3 1.70 − [347]
Cygnus X-1 2.33 − [347]

population. We improve the procedure sketched elsewhere [285], in which the Earth

was assumed to be at the edge of the Galactic disk. In our current approach we place

the Earth in its actual position (about 8 kpc from the Galactic center) and perform

the requisite integrations numerically. We further enhanced our previous analysis by

considering several source distributions. Firstly, we assume the sources are uniformly

distributed. Secondly, we assume the source density decreases exponentially with distance

from the Galactic center. These extremes are likely to bound the true source distribution.

Finally, we consider a more realistic distribution to describe the particular case of µQSOs.

Figure 17: Sketch used to calculate the flux. Notice that we take account of the approxi-
mate location of the Earth in the Galactic disk. h is a void placed around the
Earth to regularize the integration.

The ensuing discussion will be framed in the context of the thin disk approximation.
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We model the Milky Way as a cylinder of radius RG = 15 kpc and thickness δ = 1 kpc.

Consider the situation displayed in Fig. ?? in which the observer O is at the Earth,

located at a distance R = 8.3 kpc from the center of the Galaxy C. Denote the vector

from O to C by ~R, from C to the source Si by ~r ′i and from O to Si by ~ri; then ~ri = ~R+~r ′i

and so r2
i = R2 + r′2i + 2Rr′i cos θ. The integrated energy weighted total neutrino flux

from the isotropic Galactic source distribution with normal incidence at O is

4π

∫ E2

E1

EνΦ(Eν)dEν =
1

4π

∑
i

Lν,i
r2
i

=
1

4π

∑
i

Lν,i
R2 + 2Rr′ cos θ + r′2

, (604)

where Lν,i is the power output of source i and θ is the angle subtended by ~r ′i and ~R.

Assuming equal power for all sources, Lν,i = L
LS 5039

ν , we convert the sum to an integral

4π

∫ E2

E1

EνΦ(Eν)dEν =
L

LS 5039

ν

4π

×
∫∫

σ(r′) r′dr′dθ

R2 + r′2 + 2Rr′ cos θ
, (605)

where σ(r′) is the source number density. Any infrared divergence in (605) is avoided by

cutting off the integral within the void of radius h as shown in Fig. ??. For the sector of

the circle (i) containing the observer, the integral in (605) can be written as

I1 =

∫ π−φ

π+φ

dθ

∫ r1

0

σ(r′) r′dr′

R2 + r′2 + 2Rr′ cos θ

+

∫ π−φ

π+φ

dθ

∫ RG

r2

σ(r′) r′dr′

R2 + r′2 + 2Rr′cosθ
, (606)

where sinφ = h/R. To determine r1 we use the cosine law, h2 = r2
1 +R2 − 2Rr1 cos β,

r1 = R cos β ±
√
h2 −R2sin2β, (607)
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where β = π − θ. For β = 0, we must recover r1 = R− h and so we take the minus sign

in (607). The geometry of the problem then allows identification of r2 as the solution

with the positive sign in (607). For the sector of the circle (ii) outside the observer, the

integral in (605) becomes

I2 =

∫ RG

0

∫ π−φ

−π+φ

σ(r′) r′dr′dθ

R2 + r′2 + 2Rr′ cos θ
. (608)

Putting all this together, for E1 ∼ 100 TeV and E2 ∼ 1 PeV, the diffuse neutrino flux on

Earth is given by

E2
ν Φ(Eν) =

d2E2
νφν(Eν)

4π
(I1 + I2)

=
d2ζ

4π
(I1 + I2)

=
L

LS 5039

ν

16π2 ln 10
(I1 + I2) . (609)

For 100 TeV . Eν . 3 PeV, the IceCube Collaboration reports a flux

Φ(Eν) = 1.5× 10−8

(
Eν

100 TeV

)−2.15±0.15

(GeV cm2 s sr)−1 ,

assuming an isotropic source distribution and democratic flavor ratios [276]. For direct

comparison with IceCube data, (609) can be rewritten in standard units using the fiducial

value of the source luminosity derived in the previous section,

E2
ν Φ(Eν) ≈ 1.27× 10−9 GeV cm−2 s−1 sr−1I1 + I2

kpc2 . (610)

The integrals I1 and I2 have been computed numerically for various void configurations

assuming equal power density per unit area of the disk, that is σΘ(r′) = N/πR2
G, where

N is the total number of sources. The results are given in Table 5. The number of

sources required to provide a dominant contribution to IceCube data depends somewhat
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on the size of the void h. For h ≈ 3 kpc, about 900 sources are needed to match IceCube

observations. This corresponds to a total power in neutrinos of about 6 × 1036 erg s−1.

If we assume that these accelerators also produce a hard spectrum of protons with equal

energy per logarithmic interval, then the estimate of the total power needed to maintain

the steady observed cosmic ray flux is more than two orders of magnitude larger [295, 349].

Table 5: Results for numerical integration of (606) and (608), assuming various source
distributions, and equivalent point source number N . The values listed in the
table are in units of kpc−2.

h [kpc] (I1 + I2)Θ (I1 + I2)exp (I1 + I2)µQSO

1 0.0224 N 0.0211 N 0.0273 N
2 0.0163 N 0.0178 N 0.0193 N
3 0.0127 N 0.0163 N 0.0146 N
4 0.0101 N 0.0154 N 0.0113 N
5 0.0081 N 0.0148 N 0.0088 N

In this note we have advocated a scenario in which a nearby source contributes signif-

icantly to the overall flux, rendering it anisotropic. Should this be the case, the isotropic

contribution to the overall flux must be smaller than that derived based on the assump-

tion that all IceCube events contribute to the isotropic flux. To model the isotropic

background of the nearby source scenario we duplicate the procedure substituting in

(605) an exponential distribution of sources which is peaked at the Galactic center,

σexp(r′) = n0 e
−r′/r0 . We normalize the distribution to the total number of sources in

the Galaxy, N =
∫ 2π

0
dθ
∫ RG

0
σexp(r′)r′dr′. Because we have two parameters we need an

additional constraint. We choose to restrict the percentage of the total number of sources

beyond the distance R− h to the galactic edge RG,

Table 6: Number of sources required for each distribution to dominate the neutrino flux
reported by the IceCube Collaboration.

h [kpc] NΘ Nexp NµQSO

1 527 560 433
2 724 663 612
3 930 725 809
4 1169 767 1045
5 1458 798 1342
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Table 7: Best fit parameters of the HMXB spatial density distribution.

r′ [kpc] N(L > 1035 erg s−1) kpc−2

0-2 0.0± 0.05(syst.)

2-5 0.11+0.05
−0.04(stat.)±0.02(syst.)

5-8 0.13+0.04
−0.03(stat.)±0.01(syst.)

8-11 (3.8+2.1
−1.2)× 10−2(stat.)±6.5× 10−3(syst.)

11-14 (6.2+7.2
−4.3)× 10−3(stat.)±4.8× 10−3(syst.)

PR−h = 2π

∫ RG

R−h
n0e

−r′/r0 r′dr′ , (611)

We choose to take PR−h = 10%. The number of sources required to produce a diffuse

neutrino flux at the level reported by the IceCube Collaboration is given in Table 6, for

different values of h.

Recent studies [302, 303] of persistent HMXBs in the Milky Way, obtained from the

deep INTEGRAL Galactic plane survey [331], provide us a new insight into the population

of µQSOs. The HMXB surface densities (averaged over corresponding annuli) are given

in Table 7. It can be seen that the overall distribution of surface density in the Galaxy

has a peak at galactocentric radii of 5− 8 kpc and that HMXBs tend to avoid the inner

2 − 4 kpc of the Galaxy [303]. Therefore, it is clear that a simple exponential disk

component is not a good description for the radial distribution. In the spirit of [350], we

assumed a source density distribution in the form

σµQSO(r′) = N0 exp

[
−R0

r′
− r′

R0

]
, (612)

where the first term in the exponential allows for the central density depression. To

describe the observed central depression for high-mass X-ray binaries we take R0 =

4 kpc [303]. This is also supported by a fit to the data in Table 7. The number of

sources required to produce a diffuse neutrino flux at the level reported by the IceCube

Collaboration is given in Table 6, for different values of h. For a void of 1 kpc, which is

the distance to the nearest source in Table 3 (CI Cam), about 500 sources are needed to

reproduce IceCube observations.
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It is worth commenting on an aspect of this analysis which may seem discrepant at

first blush. We find that some 500 µQSOs are required to satisfy energetics requirements,

while current catalogs/estimates describe about 100 such known objects. This is not so

worrying for the following reasons. First, we have considered only the lower bound on

µQSO jet luminosity, which may vary by up to three orders of magnitude in the catalog

listings (see Table 3). In this sense our estimated required number of µQSOs that can

plausibly explain the IceCube data is a conservative one. Secondly, when considering the

nearby source scenario we did not re-evaluate the background conditions, which would

yield a smaller isotropic flux.10 Again, this is a conservative path. Thus, the analysis

presented herein adheres to a “cautious” approach throughout, lessening (or eliminating)

concerns about the discrepancy between our estimates of the required number of µQSOs

versus the cataloged quantities.

We could however, use different assumptions in the calculation; for instance, instead

of using the luminosity for LS 5039, one could use the average luminosity for the sources

given in Table 3. If we assume a proportionality factor between the luminosity of the

jet and the neutrino luminosity similar to the one for LS 5039, one can check that the

number of necesary microquasars to match the flux is reduced; this leads us to conclude

that µQSOs could provide the dominant contribution to the diffuse neutrino flux recently

observed by IceCube.

9.1.4 Constraints from gamma rays and baryonic cosmic rays

Very recently the IceCube Collaboration has extended their neutrino sensitivity to

lower energies [351]. One intriguing result of this new analysis is that the spectral index

which best fits the data has steepened from 2.15±0.15 to 2.46±0.12. If one assumes the

neutrino spectrum follows a single power law up to about 10 GeV, then the latest data

from the Fermi telescope [352] can be used to constrain the spectral index assuming the

γ-rays produced by the π0’s accompanying the π±’s escape the source. In such a scenario,

Fig. ?? shows that only a relatively hard extragalactic spectrum is consistent with the

10Evaluating the background, of course, require detailed knowledge of detector properties and properly
belongs to the territory of the IceCube Collaboration.
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data. On the other hand, the Galactic photon flux in the 10 GeV region is about an order

of magnitude larger than than the extragalactic flux; this allows easier accommodation

of a softer single power law spectrum. For the Galactic hypothesis, however, one must

consider an important caveat, namely that the expected photon flux in the PeV range has

been elusive [353]. However, a recent refined analysis of archival data from the EAS-MSU

experiment [354] has confirmed previous claims of photons in the 10 PeV region. This

analysis also results in a larger systematic uncertainty at all energies, relaxing previously

reported bounds in the PeV range. While previous bounds were marginally consistent

with non-observation of PeV photons expected to accompany the IceCube neutrinos [295],

this new less stringent bound is more comfortably consistent.

There is an additional interesting consequence of the new IceCube data. The neutrino

spectral index should follow the source spectrum of the parent cosmic rays. We have

shown elsewhere [295, 355] that a spectral index of ∼ 2.4 is required for consistency with

current bounds on cosmic ray anisotropy. Further credence regarding our best-fit spectral

index has been recently developed via numerical simulations [356]. It is worth stressing

that our discussion regarding source energetics assumes the canonical Fermi index of

α = 2. Given the current level of uncertainties on the atmospheric neutrino background,

the spatial distribution and total number of microquasars, as well as the large variation

in microquasar jet luminosities (see Table 3), shifting our assumed spectral index from

α = 2 to α = 2.4 will have little impact on the arguments concerning energetics explored

herein. In the future, improved measurements all-round will require a considerably more

elaborate analysis, including detailed numerical simulations.

9.1.5 Final remarks

Motivated by recent IceCube observations we have re-examined the idea that µQSOs

are high energy neutrino emitters. We considered the particular case of LS 5039, which

as of today represents the source with lowest p-value in the IceCube sample of selected

targets [276]. We have shown that if LS 5039 has a compact object powering jets, it

could accelerate protons up to above about 30 PeV. These highly relativistic protons
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Figure 18: The open symbols represent the total extragalactic γ-ray background for dif-
ferent foreground (FG) models as reported by the Fermi Collaboration [352].
For details on the modeling of the diffuse Galactic foreground emission in the
benchmark FG models A, B and C, see [352]. The cumulative intensity from
resolved Fermi LAT sources at latitudes |b| > 20◦ is indicated by a (grey)
band. The solid symbols indicate the neutrino flux reported by the IceCube
Collaboration. The best fit to the data (extrapolated down to lower energies)
is also shown for comparison.

could subsequently interact with the plasma producing a neutrino beam that could reach

the maximum observed energies, Eν & PeV. There are two extreme possibilities for

neutrino production: (i) close to the base of the jet and (ii) at the termination point of

the jet. By normalizing the accompanying photon flux to H.E.S.S. observations in the

TeV energy range [311, 312] we have shown that, for the first scenario, photon absorption

on the radiation field leads to a neutrino flux O(10−8E−2
ν GeV−1 cm−2 s−1). Should this

be the case, the neutrino flux almost saturates the current upper limit reported by the

ANTARES Collaboration [327]. The second possibility yields a flux of neutrinos which

is about an order of magnitude smaller. A priori these two extreme flux predictions are

partially consistent with existing data. However, one can ask why a source with similar

characteristics (LS I +61 303) which is in the peak of the field of view of IceCube has not

been already discovered. The current 90% CL upper limit on LS I +61 303 reported by
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the IceCube Collaboration is O(10−9E−2
ν GeV−1 cm−2 s−1), favoring neutrino production

near the end of LS 5039 jets.

We have also generalized our discussion to the population of µQSOs in the Galaxy.

Using the spatial density distribution of high-mass X-ray binaries obtained from the deep

INTEGRAL Galactic plane survey and assuming LS 5039 typifies the µQSO population

we have demonstrated that these powerful compact sources could provide the dominant

contribution to the diffuse cosmic neutrino flux. Future IceCube observations will test

the LS 5039 hypothesis, providing the final verdict for the ideas discussed in this paper.

Of course, a complete picture which accommodates all the shower events outside the

galactic plane may well require an extragalactic component. Indeed most of the istropic

background is dominated by muon tracks. Explaining the possible isotropy of shower

events may eventually prove only to be possible by considering extragalactic sources, and

we shall consider such kind of sources in the next section.

9.2 Astrophysical sources: Starbursts

Both the neutrino energy spectrum and directional measurements provide clues about

which astrophysical sources may be responsible for extraterrestrial neutrinos. We will be-

gin with a discussion of characteristics of the energy spectrum as it pertains to potential

source candidates, and then move on to the issue of directional correlations with astro-

physical objects. First, however, we should remind the reader that the three neutrino

species νe, νµ and ντ induce different characteristic signal morphologies when they inter-

act in ice producing the Cherenkov light detected by the IceCube optical modules. The

charged current (CC) interaction of νe produces an electromagnetic shower which ranges

out quickly. Such a shower produces a rather symmetric signal, and hence exhibits a

poor angular resolution of about 15◦ − 20◦ [248]. On the other hand, a fully or mostly

contained shower event allows one to infer a relatively precise measurement of the νe

energy, with a resolution of ∆(log10Eν) ≈ 0.26 [251]. The situation is reversed for νµ

events. In this case, CC interaction in the ice generates a muon which travels relatively

unhindered leaving behind a track. Tracks point nearly in the direction of the original
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νµ and thus provide good angular resolution of about 0.7◦, while the “electromagnetic

equivalent energy” deposited represents only a lower bound of the true νµ energy. The

true energy may be up to a factor 10 larger than the observed electromagnetic equiva-

lent energy. Finally, ντ CC interactions may, depending on the neutrino energy, produce

“double bang” events [252], with one shower produced by the initial ντ collision in the ice,

and the second shower resulting from most subsequent τ decays. Separation of the two

bangs is feasible for ντ energies above about 3 PeV, while at lower energies the showers

tend to overlap one another [253].

With these points in mind, we now move to the current state of the neutrino energy

measurements. One striking feature of the IceCube spectrum is that, assuming an un-

broken E−γν , γ = 2 flux expected from Fermi acceleration in strong shocks, there is either

a cutoff or a spectral break evident around 2 PeV. Notably, there is no increase in obser-

vation rate near 6.3 PeV, as one would expect from the Glashow resonance [277]. This

implies that either the acceleration process dies out at some energy, or that the spectrum

is simply steeper than γ = 2. It has been shown elsewhere that an unbroken power law

spectrum with γ = 2.3 is also reasonably consistent with the IceCube data [295].

In order to ascertain the physical processes which could underlie these spectral fea-

tures, let us discuss briefly plausible neutrino production mechanisms. It is generally

thought that extraterrestrial neutrinos are produced via proton interactions with either

photons or gas near the proton acceleration sites, resulting in pions which in turn gener-

ate neutrinos as decay products. For the case of neutrino production via pγ interactions,

the center-of-momentum energy of the interaction must be sufficient to excite a ∆+ res-

onance, the ∆+(1232) having the largest cross-section. The threshold proton energy for

neutrino production on a thermal photon background of average energy Eγ is

Eth = mπ(mp +mπ/2)/Eγ , (613)

where mπ and mp are the masses of the pion and proton, respectively. Since the proton

energy must be about 16 times higher than the daughter neutrino energies, Eq. (613)

implies photons with energies in the range ∼ 6 eV should be abundant in the region of
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proton acceleration in order to generate ∼ PeV neutrinos. Gamma-ray bursts (GRBs)

may be the only astrophysical objects capable of generating a photon background of

the required energy for this scenario [289]. Furthermore, production of neutrinos in the

100 TeV range requires photon energies about an order of magnitude higher. In contrast,

if neutrinos are produced via interaction in gas near the acceleration site, the energy

threshold requirement is lifted, as pp interactions generate pions over a broad range of

energies.

Figure 19: Neutrino and gamma ray spectra compared to two neutrino spectral in-
dices. The squares show the background from atmospheric νµ events as
observed by IceCube40 [261]. The circles and arrows show the recently re-
ported IceCube flux (points with solid error bars do not include prompt back-
ground while those with dash error bars do) [249]. The The diamonds are
gamma ray flux measurements from Fermi [262]. The two dashed lines cor-
respond to E2

νdNν/dEν = 10−7E−0.15 GeV cm−2 s−1 sr−1 and E2
νdNν/dEν =

3×10−8 GeV cm−2 s−1 sr−1, with the spectrum steepening above about 2 PeV
to γ = 3.75 and γ = 5.0, respectively. For these two neutrino fluxes, the as-
sociated predictions for the gamma ray fluxes after propagation are displayed
as the upper and lower bounds of the shaded region [284] . Note that the
spectral index γ = 2.15 at injection agrees well with both the Fermi-LAT and
IceCube measurements.
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Extending previous multifrequency studies of individual galaxies [258], Loeb and Wax-

man (LW) [287] showed in 2006 that starburst galaxies constitute a compelling source for

efficient neutrino production up to ∼ 0.3 PeV, and possibly beyond, though for energies

exceeding 1 PeV the predictions are quite uncertain. For energies up to ∼ 1 PeV, the

LW analysis predicts a spectral index γ = 2.15± 0.10 which accurately fits the IceCube

data, and indeed predicts an observation rate for Eν of 101.5±0.05 for a 1 km3 detector,

in line with the rate subsequently observed by IceCube. Neutrino production from π±

decays must be accompanied by a corresponding flux of gamma rays from decays of π0’s

produced in the pp interactions, providing a robust cross-check of the pion production

rate and corresponding neutrino spectrum. A spectrum steeper than γ ∼ 2.2 leads to an

overproduction of gamma rays compared to measurements by Fermi-LAT [284], indicat-

ing that a soft unbroken γ = 2.3 spectrum is implausible for extragalactic sources. Thus,

it seems that a cutoff or suppression must be at play. All in all, the starburst source

hypothesis together with a steepening of the spectrum to at least γ = 3.75 above 3 PeV

fits well to the IceCube data and satisfies the constraints from gamma ray observations,

as shown in Fig. ??.

We now discuss how double bang topologies may serve as a discriminator among pos-

sible astrophysical sources powered by highly relativistic winds. Extraterrestrial neutrino

production proceeds via the decay chain

π+ → µ+ νµ (and the conjugate process) . (614)

�
e+ ν̄µ νe

This decay chain may be complete in the sense that both decays indicated in Eq. (614)

occur without significant change in the µ energy, or it may be incomplete, in which case

the µ suffers possibly catastrophic energy loss before decay. For the case of a complete

decay chain, each neutrino carries on average about 1/4 of the parent pion energy. If the

µ radiates away energy before it decays, the νµ from the first decay will still carry on

average 1/4 of the π± energy, while the other two neutrinos will emerge with less than
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the nominal 1/4 of the parent pion energy. In such a scenario it is conceivable that the

first νµ in the chain can be produced above 3 PeV, whereas ν̄e may not reach beyond

2 PeV, and in particular may not be able to reach the energy required to interact at the

Glashow resonance.

We now discuss the muon energy loss quantitatively by exploiting the observation of

gamma rays accompanying the neutrino flux. In the case of muons with energies in excess

of 1 PeV, energy losses are dominated by synchrotron radiation. The synchrotron loss

time is determined by the energy density of the magnetic field in the wind rest frame.

Defining τµ,syn as the characteristic muon cooling time via synchrotron radiation and

τµ,decay as the muon decay time, it is necessary that τµ,syn < τµ,decay in order for the decay

chain to be complete. τµ,syn ∼ τµ,decay determines a critical energy Esyn
µ at which energy

losses begin to affect the decay chain. For the characteristic parameters of a GRB wind,

the maximum energy at which all neutrinos in the decay chain have on average 1/4 of

the pion energy is

Esyn
ν ≈ 1

3
Esyn
µ ∼ 1

3

Γ4
2.5 ∆t−3

L
1/2
52

PeV, (615)

where Γ = 102.5Γ2.5 is the wind Lorentz factor, L = 1052L52 erg/s is the kinetic energy

luminosity of the wind, and ∆t = 10−3∆t−3 s is the observed variability time scale of

the gamma-ray signal [263]. Equation 615 is also valid for neutrinos produced in blazars.

In this case, ∆t ∼ 104 s, Γ ∼ 10, and L ∼ 1047 erg/s, yielding Esyn
ν ∼ 1 EeV. For

starburts, the galactic wind is non-relativistic and the magnetic field is small enough

to render synchrotron losses negligible in comparison. In summary, for GRBs, the muon

cooling is sufficient to influence the decay chain in such a way as to affect the flavor ratios

at PeV energies, whereas for blazar and starbursts the decay chain is only affected for

muon energies � 10 PeV. Note that for GRBs, ∆t−3 ∼ 1 constitutes a lower bound, and

hence the consequences discussed herein may require some fine-tuning of the parameters

of Eq. (615).

It is nonetheless worth noting some potential consequences of the above hypotheses.

As noted elsewhere pγ interactions produce fewer ν̄e than pp ineractions [278]. Indeed,
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most of the ν̄e flux originates via oscillations of ν̄µ produced via µ+ decay. For production

of Eν & 1 PeV in GRBs, the νµ in the chain of Eq. (614) is more energetic than the ν̄µ.

This may suggest that the softening of the spectral index takes place at different energies

for neutrino and antineutrino fluxes. If this were the case, at production the high energy

end of the GRB flux would be dominated by νµ produced via π+ decay. As described

previously, however, IceCube can measure only lower bounds for the muon energies. As

it turns out, IceCube has recently recorded a νµ with a minimum energy of 0.5 PeV [265],

but which may have an energy as much as 10 times higher. If this is indeed the case, it

could indicate a high energy muon from the first decay of Eq. (614). We can also speculate

on more potentially convincing observations which may emerge in the future. Assuming

maximal νµ− ντ mixing, observation of a high energy νµ may imply eventual observation

of a high energy ντ , which above about 3 PeV would exhibit the distinctive double bang

topology discussed above. Note that some fine tuning of the model presented here may

be required for such events to manifest. In particular, the µ± cooling time of Eq. (615)

must be smaller than the µ± decay time in order to prevent the ν̄e from reaching the

Glashow resonance (thus far not observed). Further, the π± cooling time must exceed its

lifetime in order to produce a ντ above ∼ 3 PeV. Further, as this is a phenomenological

exercise, we have neglected possible experimental effects. As such, this study is not meant

to make a concrete prediction, but rather to point out that if such double bang topologies

are observed in the future while the Glashow resonance is not, it would provide a valuable

piece to the puzzle of extraterrestrial neutrino origins, favoring the GRB hypothesis over

the blazar or starburst ones, each of which would require implausible fine-tuning to be

consistent with observation.

Now, since starburst galaxies are plausible source candidates, consistent with the

neutrino energetics observed so far, the next obvious step is to check whether there are

any correlations with the positions of starburst galaxies and the observed neutrino arrival

directions. Before proceeding we note that hypernovae, which may well be responsible

for sub-PeV to PeV neutrino emissions [266], are present in starburst galaxies as well as

other star forming regions, though the rate of occurrence is higher in starburst galaxies.
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Figure 20: Comparison of IceCube event locations [249] with star-forming galaxies [267]
and the ultrahigh energy cosmic ray hot-spot reported by the TA Collabo-
ration [273] in a Mollweide projection. The 27 shower events (circles) and 8
track events (diamonds) reported by the IceCube Collaboration. The 3 high-
est energy events are labeled 1, 2, 3, from high to low, respectively. The red
stars indicate the 64 star-forming galaxies beyond the Local Group. The 4
yellow stars indicate galaxies in the local group. NGC 253 and M82, our two
closest starbursts, are labeled. The shaded band delimits the Galactic plane.
The square in the upper right marks the center of the TA hot-spot, with the
surrounding dashed line indicating its 20◦ extent..

To test the hypothesis that star forming regions correlate with the IceCube events, we

have employed the list of star-forming regions compiled by the Fermi-LAT Collaboration

[267], which includes 64 of the 65 sources of the HCN survey [268] as well as the local

galaxies (SMC, LMC, M31, and M33). The HCN survey is, to date, the most complete

study of galaxies with dense molecular gas content. It includes nearly all the IR-bright

galaxies in the northern sky (δ ≥ −35◦) with strong CO emission, as well as additional

galaxies taken from other surveys. Objects within the Galactic latitudes |b| < 10◦ are

not included in the survey due to diffuse emission from the Galactic plane.

A comparison among all of the IceCube events and the star-forming galaxy survey is

shown in Fig. ??. Not surprisingly given the size of the localization error, there are a

few coincidences, among them the two nearby starbursts M82 and NGC 253 (observed in
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gamma-rays [270, 271] which are considered to be possible ultrahigh energy cosmic ray

emitters [272]). The highest energy event correlates with NGC 4945, the second highest

with the SMC, and the third highest correlates with IRAS 18293-3413. However, none

of the track topologies correlates with an object in the survey.

To estimate the number of νµ required to make a statistically significant statement, we

have run 106 simulations with 68 sources and computed the fraction correlating by chance

with 1◦ circular regions of the sky. Of these, 90% of the simulations show 0 correlations.

If future observations contain 5 or more νµ events which correlate with the 68 sources in

the survey, an association by chance will be excluded at more than 99% CL [279].

For νµ events, the equivalent electromagnetic energy represents only a lower bound on

the true neutrino energy. Consequently, escaping the background region requires setting a

cut on the electromagnetic equivalent energy ' 0.5 PeV. This threshold is arrived at via

the following argument. Figure 1 shows that at Eν = 1 PeV the background from prompt

emission is negligible. Since the muon neutrino energy is at least 2 times the inferred

electromagnetic equivalent energy, the proposed cut produces a virtually background-free

sample. Since 1 such event has already been recorded, we might guess an observation rate

of 1 event every ∼ 2 years, indicating a long wait with the current 1 km3 configuration.

Next generation IceCube, which could increase the instrumented volume by up to an

order of magnitude (but with larger string spacing), will therefore be greatly beneficial

for this study, as well as other correlation analyses.

We conclude with one additional observation. It was recently noted [275] that the

ultrahigh energy cosmic ray hot-spot reported by the TA Collaboration [273] correlates

with 2 of the 28 events initially reported by the IceCube Collaboration [248], with a sta-

tistical significance of around 2σ. In the newer IceCube data (the 37 event sample [249])

there is one additional shower event which correlates with the TA hot-spot, as shown in

Fig ??. The hot-spot also contains an abundance of star-forming regions and is near M82.
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9.3 Insufficiencies of astrophysical models

The neutrino flux in (1) is exceptionally high by astronomical standards, with a mag-

nitude comparable to the Waxman-Bahcall bound [83]. A saturation of this bound can

only be achieved within astrophysical environments where accelerator and target are es-

sentially integrated. Potential candidate sources are discussed in [285]. These powerful

sources produce roughly equal numbers of π0, π+ and π− in the proton-proton beam

dump. The π0 accompanying the π± parents of IceCube neutrinos decay into γ-rays,

which are only observed indirectly after propagation in the extragalactic radiation fields

permeating the universe. These γ-rays initiate inverse Compton cascades that degrade

their energy below 1 TeV. The relative magnitudes of the diffuse γ-ray flux detected by

Fermi LAT [352] can then be used to constrain the spectral index, assuming the γ-rays

produced by the π0’s accompanying the π± escape the source. Figure ?? shows that only

a relatively hard injection spectrum is consistent with the data. Indeed, if IceCube neutri-

nos are produced through pp collisions in optically thin extragalactic sources, the γ-rays

expected to accompany the neutrinos saturate the Fermi LAT flux for α ≈ 2.2 [284]. The

overall isotropy of the observed arrival directions and the fact that a PeV event arrives

from outside the Galactic plane disfavor a Galactic origin. Moreover, for the Galactic hy-

pothesis one must consider another important caveat, namely that the expected photon

flux in the PeV range [295] has been elusive [341].
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10 Reconciling the Hubble constant mea-

surements

10.1 Decaying dark matter and the Hubble parameter

The difficulties so far encountered in modeling the production of IceCube neutrinos

in astrophysical sources fueled the interest in particle physics inspired models. By far

the most popular model in this category is the decay of a heavy massive (∼ few PeV)

relic that constitute (part of) the cold dark matter (CDM) in the universe [89]. The lack

of events in the vicinity of the Glashow resonance, implies the spectrum should decrease

significantly at the energy of a few PeV. Spectra from dark matter decays always exhibit

a sharp cutoff determined by the particle mass. Furthermore, the 3 highest energy events

appear to have identical energies, up to experimental uncertainties. A line in the neu-

trino spectrum would be a smoking gun signature for dark matter. If the heavy relic also

decays into quarks and charged leptons, the mono-energetic neutrino line may be accom-

panied by a continuous spectrum of lower-energy neutrinos, which can explain both the

PeV events and some of the sub-PeV events. All of these considerations appear to be in

agreement with the data [90]. Even much heavier relic particles, with masses well above

a PeV, can generate the required neutrino spectrum from their decays if their lifetime

is much shorter than the present age of the universe [91]. The spectrum of neutrinos is

modified by a combination of redshift and interactions with the background neutrinos,

and the observed spectrum can have a cutoff just above 1 PeV for a broad range of the

relic particle masses. In this Letter we will reexamine the idea of a dark matter origin

for IceCube events.
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Figure 21: The open symbols represent the total extragalactic γ-ray background for differ-
ent foreground (FG) models as reported by the Fermi LAT Collaboration [352].
For details on the modeling of the diffuse Galactic foreground emission in the
benchmark FG models A, B and C, see [352]. The cumulative intensity from
resolved Fermi LAT sources at latitudes |b| > 20◦ is indicated by a (grey)
band. The solid symbols indicate the neutrino flux (per flavor) reported by
the IceCube Collaboration. The blue points are from the data sample of the
most recent IceCube analysis [351]. The light grey data points are from the 3-
year data sample of [276], shifted slightly to the right for better visibility. The
best fit to the data (extrapolated down to lower energies), is also shown for
comparison [351]. The dashed line indicates the mono-energetic signal from
dark matter decay. Note that a plotting of E2Φ = EdF/(dΩ dAdt d lnE)
versus lnE conserves the area under a spectrum even after processing the
electromagnetic cascade. Thus, the area of the π0 contribution to the diffuse
γ-ray spectrum (total diffuse γ-ray flux provides an upper bound) implies the
low energy cutoff (upper bound) to the π± origin of the neutrinos.

10.1.1 Connecting the dots

The tension between the CMB based determination of the Hubble constant and the

h value inferred from direct low redshift measurements is intriguing and deserves further

attention. On the one hand, the underlying source of discrepancy could be some system-

atic uncertainty in the calibration [96]. On the other hand, it could trace a deficiency of

the concordance model of cosmology. In the spirit of [97], it has been recently conjec-
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tured that Planck -inspired ΛCDM paradigm can be reconciled with HST measurements

if a subdominant fraction fX of CDM is unstable and decays rather quickly with respect

to the present Hubble time [76]. The width of the unstable component ΓX , normalized

to H0, is an independent parameter of the model. By forcing the X particles to decay

after recombination ΓX/H0 is bounded from above. Moreover, the X is assumed to decay

(dominantly) into invisible massless particles of the hidden sector and hence does not pro-

duce too many photons. A joint fit to Planck, supernova, and HST data reveals that the

base ΛCDM model, with Γ/H0 = 0, is outside the 2σ likelihood contours in the (ΓX , fX)

plane [76]. The data instead favor 0.05 . fX . 0.10. The mean value and 1σ error

derived from a maximum likelihood analysis are h = 0.716 ± 0.020 [76]. Interestingly,

within the same parameter range the model could also alleviate the emerging tension with

the cluster data. (See, however, [98].) For example, for fX ' 0.10 and ΓX/H0 ' 2000 the

corresponding values of Ωm ' 0.25 and σ8 ' 0.80 [76] are marginally consistent with the

2σ allowed contours by the Planck cluster mass scale [99] and the extended ROSAT-ESO

Flux Limited X-ray Galaxy Cluster Survey (REFLEX II) [100]. For smaller values of fX

and or ΓX/H0 the values of Ωm and σ8 move closer to the base ΛCDM model [76]. Next,

in line with our stated plan, we take fX ' 0.07 and ΓX/H0 ' 1500 as benchmarks and

investigate what would be the CDM fraction required to decay into the visible sector to

accommodate IceCube observations.

10.1.2 Bump-Hunting

The two main parameters characterizing the X particle are its lifetime τX ' 3×1014 s

and its mass mX , which is a free parameter. We assume the neutrino produced via X

decay is mono-energetic, with energy εν = mX/2. The neutrino energy distribution from

X decay is given by dNν/dEν = Nν δ(Eν−εν), where Nν is the neutrino multiplicity. We

further assume the dominant decay mode into the visible sector, contributing to neutrino

production, is X → νν̄ and so Nν = 2.

The evolution of the number density of neutrinos nν(Eν , z) produced at cosmological

distances in the decay of X particles is governed by the Boltzmann continuity equation,

189



www.manaraa.com

∂[nν/(1 + z)3]

∂t
=
∂[HEνnν/(1 + z)3]

∂Eν
+Qν , (616)

together with the Friedman-Lemâıtre equations describing the cosmic expansion rate

H(z) as a function of the redshift z. This is given by H2(z) = H2
0 [Ωm(1 + z)3 + ΩΛ].

The time-dependence of the red-shift can be expressed via dz = −dt (1 + z)H. We have

found that for the considerations in the present work neutrino interactions on the cosmic

neutrino background can be safely neglected [101]. In (616),

Qν(Eν , t) =
nX(t)

τX
BX→νν̄

dNν

dEν
, (617)

is the source term, nX(t) = YX s(t) e−t/τX is the number density of X, BX→νν̄ is the

neutrino branching fraction, s(t) is the entropy density, and

YX = 3.6× 10−9 ΩXh
2

mX/GeV
(618)

is the comoving number density at the CMB epoch.

We solve for the number density at present time. The equation becomes:

∂nν
∂t

= −2Hnν +HE
∂nν
∂E

+Qν , (619)

which is a first order partial differential equation. Consider the general equation

aux + buy = c, (620)

where the subscript denotes partial derivative and a, b and c are functions of x, and y.

The solutions of this equation are given by

dx

ds
= a,

dy

ds
= b,

du

ds
= c. (621)

Applying this to our problem, we get:
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dt

ds
= 1, (622)

dE

ds
= −HE, (623)

dn

ds
= −2Hn+Qν . (624)

From equation (622), we identify the parameter s as the variable t. The other important

equation for us is (624), which has the solution:

n = e
∫ t0
−∞(−2H)dt′C +

∫ t0

−∞
e
−

∫ t′
t0

(−2H)dt′′
Qν(t

′, E)dt′. (625)

We set the integration constant as zero. Now, take a closer look at the following integral:

∫
2Hdt =

∫
2
da/dt

a
dt =

∫
2
da

a
= ln(a/a0)2. (626)

Using this result on (625), we get:

nν =

∫ t0

−∞
eln(a/a0)2Qν(t

′, E)dt′ =

∫ t0

−∞

(a0

a

)−2

Qνdt
′. (627)

If we assume that the decay process produces monochromatic neutrinos,

dNν

dE
= Nνδ(Eν − εν), (628)

the source term, as defined in the paper, becomes

Qν =
nX(t)

τX
B
dNν

dE
=
nX(t)

τX
BNνδ(E − εν). (629)

The integral for nν can be solved,

nν =
NνYXs(t0)

τXEν

[
e−t̄/τX

H(t̄)

]
1+z(t̄)=εν/Eν

(630)
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We have an expression for nν . We can now define the flux Φ as:

Φ =
c

4π
nν . (631)

By solving (616) we have obtained the (all flavor) neutrino flux at present epoch t0,

Φ(Eν) =
c

4π
nν(Eν , 0) (632)

=
c

4π

NνYXs(t0)

τXEν
BX→νν̄

e−t∗/τX

H(t∗)

∣∣∣∣
1+z(t∗)=εν/Eν

,

with s(t0) ' 2.9× 103 cm−3. In order to obtain the curve for the dark matter signal, we

need to rewrite the equation above in terms of energy. If we assume a Λ-CDM model,

with the parameters

Ωm0 = 0.31566, (633)

ΩΛ0 = 0.6844, (634)

we need to express time (t) and the Hubble papameter (H(t̄)) as a function of energy.

This can be accomplished by solving the following integral (from cosmology):

t =
1

H0

∫ (1+z)−1

0

dx√
0.31566x−1 + 0.6844x−2

, (635)

where the upper limit of integration can be obtained from

1 + z(t) =
εν
Eν

(636)

and the solution is (after using εν = 280 PeV and 71.6 Km/ s / Mpc for the Hubble

constant):

t = 3.4665× 1017ArcSinh
[
3.14304× 10−13E3/2

ν

]
s. (637)

Now, for the Hubble parameter:
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H(z) = H0(1 + z)
√

0.6844(1 + z)−2 + 0.31566(1 + z), (638)

which gives

H(z) = 2.32468× 10−18

√
0.6844 +

6.92805× 1024

E3
ν

s−1. (639)

Putting all of this on the equation for Φ, as well as the values for the constants (yeld,

entropy etc) we get:

Φ =
1.622× 10−11√

0.6844 +
6.92805× 1024

E3
ν

Eν

exp
{
−1155.5 ArcSinh

[
3.14304× 10−13E3/2

ν

]}
(640)

Maximization of the flux yields the energy relation for the peak in the spectrum,

Epeak
ν ' 1

2

mX/2

1 + z(τX)
, (641)

which sets the mass of the X. Since z(τX) ' 140 to accommodate the PeV peak in

IceCube’s neutrino spectrum we take mX ' 560 PeV. Now, from (618) we obtain YX ≈

5.4 × 10−20. Finally, we normalize the cosmic neutrino flux per flavor using (1). The

intensity of the mono-energetic signal at the peak is taken as 60% of the flux reported by

the IceCube Collaboration, yielding a neutrino branching fraction BX→νν̄ ∼ 5×10−8 into

all three flavors. The width, an output of the Boltzmann equation, is shown in Fig. ??. It

is evident that the mono-energetic neutrino spectrum is in good agreement with the data.

In particular, the flux suppression at the Glashow resonance, Φ(Eres
ν )/Φ(Epeak

ν ) ' 0.011,

is consistent with data at 1σ.

The model is fully predictive and can also be confronted with Fermi LAT data. It

is reasonable to assume that BX→e+e− ≈ BX→νeν̄e ≈ BX→uū ≈ BX→dd̄. About 1/3 of the

energy deposited into either uū or dd̄ is channeled into γ-rays via π0 decay and about 1/6

of the energy is channeled into electrons and positrons. As previously noted, the γ-rays,

electrons, and positrons trigger an electromagnetic cascade on the CMB, which develops
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via repeated e+e− pair production and inverse Compton scattering. As a result of this

cascade the energy gets recycled yielding a pile up of γ-rays at GeV . Eγ . TeV, just

below the threshold for further pair production on the diffuse optical backgrounds. We

have seen that under very reasonable assumptions the energy deposited into neutrinos

is comparable to the energy deposited into the electromagnetic cascade. Therefore, the

neutrino energy density at the present epoch,

ων =

∫
Eν nν(Eν , 0) dEν = 2.5× 10−11 eV cm−3, (642)

provides reliable estimate of the cascade energy density (ωcas ∼ ων), which is bounded by

Fermi LAT data to not exceed ωmax
cas ∼ 5.8 × 10−7 eV cm−3 [102]. We conclude that the

γ-ray flux associated with the neutrino line is found to be about 4 orders of magnitude

smaller than the observed flux in the Fermi LAT region.

We now turn to discuss the possibility of distinguishing the neutrino line from an

unbroken power-law spectrum without the neutrino line, with future IceCube data. The

value of the spectral index is determined by the “low energy” events. Following the best

IceCube fit we adopt a spectrum ∝ E−2.46
ν . We assume that the IceCube events below

1 PeV have an astrophysical origin. Indeed, the steep spectrum ∝ E−2.46
ν may suggest

we are witnessing the cutoff of TeV neutrino sources running out of power. Using the

IceCube aperture for the high-energy starting event (HESE) analysis [276] we compute

the event rate per year above 1 PeV for both the neutrino flux given in (1) and that

of (632). The results are given in Table 8. As expected, the predictions from X decay

are in good agreement with existing data. Because of the smeared energy-dependence of

muon tracks, in what follows we will only consider cascades and double bang topologies

initiated by charged current interactions of electron and tau neutrinos, as well as all

neutral current interactions processes. We identify the events coming from the power

law spectrum NB with background and adopt the standard bump-hunting method to

establish the statistical significance of the mono-energetic signal. To remain conservative

we define the noise ≡
√
NB +NS, where NS is the number of signal events. In 10 years
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Table 8: Event rates (yr−1) at IceCube for Emin
ν = 1 PeV.

Emax
ν /PeV spectrum ∝ E−2.46

ν X decay spectrum
νe νµ ντ νe νµ ντ

2 0.20 0.18 0.20 0.25 0.23 0.25
3 0.27 0.24 0.27 0.46 0.41 0.46
4 0.31 0.27 0.30 0.58 0.51 0.56
5 0.34 0.29 0.32 0.66 0.56 0.62

of operation the total detection significance,

Sdet =
NS√
NB +NS

, (643)

would allow distinguishing the neutrino line from a statistical fluctuation of a power

law spectrum ∝ E−2.46
ν at the 3σ level. Note that the shape of the distribution with

energy conveys additional information allowing one to distinguish the line signal from

fluctuations of a power-law background. The proposed IceCube-Gen2 extension plans

to increase the effective volume of IceCube by about a factor of 10 [103]. This facility

will not only increase the HESE sensitivity but also improve the energy resolution for

muon tracks. In a few years of operation IceCube-Gen2 will collect enough statistics to

elucidate the dark matter–neutrino connection with Sdet > 5σ.

We end with an observation: IceCube data can also be fitted by a neutrino line peaking

at Eν ∼ 20 TeV superimposed over a power law spectrum (∝ E−2
ν ) of astrophysical

neutrinos [104]. By duplicating our discussion for mX ∼ 1 PeV it is straightforward to

see that the model can also accommodate this neutrino line.

Taking all of this into account, we have shown that the PeV flux of extraterrestrial

neutrinos recently reported by the IceCube Collaboration can originate through the decay

of heavy dark matter particles with a mass ' 560 PeV and a lifetime ' 3× 1014 s. On a

separate track, the tension between Planck data and low redshift astronomical measure-

ments can be resolved if about 7% of the CDM component at CMB epoch is unstable.

Assuming that such a fraction of quasi-stable relics is responsible for the IceCube flux we

determined the neutrino branching fraction, BX→νν̄ ∼ 5 × 10−8. The model has no free

parameters and will be tested by future IceCube data. Indeed 10 years of data taking
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will be required to distinguish the neutrino line from an unbroken power-law spectrum at

the 3σ level. The upgraded IceCube-Gen2 will collect enough statistics to elucidate the

dark matter-neutrino connection at the 5σ discovery level in a few years of operation.
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11 Appendix A - 4-momentum and Man-

delstam variables

11.1 Special Relativity

Postulate 1: Principle of Relativity

The laws of physics are the same in all inertial frames.

Postulate 2: Invariance of the speed of light

The speed of light in vacuum, c, is the same in all inertial frames.

Now, we consider the following situation: suppose that an observer, at a certain

position(x,y,z) and time t as seen in a reference frame S, decides to shine some light, in

all directions; that’s what we refer to as the event E. In a spacetime diagram 1+2 (we

supress one spatial component), we would see something like this:

In the picture above, we also considered the ”past portion” of what we call the light

cone. The future corresponds to the portion of spacetime that can receive information

about the event E; since nothing travels faster than the speed of light, the light cone

defines the portion of the spacetime that is causally connected to the vent E. The ”past”

portion is analogous: corresponds to the portion of the spacetime that is able to reach E,

i.e, that is causally connected to it. Note that the light cone obeys the following equation:

(c(t− t0))2 − (x− x0)2 − (y − y0)2 − (z − z0)2 = 0. (644)

Now, suppose that in another inertial reference frame, S’, somebody else decides to

do the same thing. Since the speed of light is the same in both reference frames, the light

cone passing through the same event (i.e. a point in the continuum of spacetime) would

have the equation

(c(t′ − t′0))2 − (x′ − x′0)2 − (y′ − y′0)2 − (z′ − z′0)2 = 0. (645)
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Figure 22: Light cone

After seeing this, it is therefore natural to ask: is there any sort of transformations,

from S to S’, that leaves the structure of the light cone unchanged? The answer is yes.

First, using Einstein summation convention we write the equations above as

ηµν(x
µ − xµ0)(xν − xν0) = 0 (646)

ηµν(x
′µ − x′µ0 )(x′ν − x′ν0 ) = 0 (647)

where

η = diag(1,−1,−1,−1). (648)

Our first attemp is to search for linear transformations of the form:

x′ = Λµ
νx

ν . (649)
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when applied to the light cone equation of the S’ frame,

0 = ηµν(x
′µ − x′µ0 )(x′ν − x′ν0 ) = ηαβΛα

µΛβ
ν (xµ − xµ0)(xν − xν0), (650)

comparison between the equations gives

ηαβΛα
µΛβ

ν = Cηµν , (651)

where C is a constant. For simplicity, we look at the case C=1. So, we want transforma-

tions such that

ηαβΛα
µΛβ

ν = ηµν , (652)

holds true.

Definition

The transformations that satisfy the condition above are called Lorentz transforma-

tions.

At this point, our problem reduced to the search of the transformations that leave

the entity ηµν unchanged. Before we proceed, it is important to take a closer look at this

matrix.

Definition

ηµν , as defined above, is the metric of the Minkowski spacetime, the flat (zero curva-

ture) spacetime of Special Relativity.

The metric carries a lot of information about the spacetime itself. Information about

the geometry of the spacetime is contained on it, and it also tells us how to perform the

scalar product in the spacetime it is defined (more details about this can be found in

later chapters). In particular, in our case, the scalar product between two vectors, v and

u, in the Minkowski spacetime is defined as:
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ηαβv
αuβ = η00v

0u0 + η11v
1u1 + η22v

2u2 + η33v
3u3 = v0u0 − v1u1 − v2u2 − v3u3. (653)

If one perform the reference frame transformations we have been talking about on the

vectors v and u,

v′µ = Λµ
νv

ν , (654)

u′µ = Λµ
νu

ν , (655)

ηαβv
′αu′β = ηαβΛα

µΛβ
νv

µuν = ηµνv
µuν . (656)

This means that the scalar product of two vectors in this spacetime remains unchanged

by the transformations of reference frame. This is a very important result, and we will

use it later.

The metric can also be used to ”raise” and ”lower” indices. From mathematics, we

can recall the definition of dual vectors:

Definition

Let V be a vector space and Ω be the set of linear functionals that map V into the

real numbers,

ω ∈ Ω, ω : V → R, (657)

the elements of Ω are called dual vectors.

Let vµ be a vector defined in the Minkowski spacetime. The quantity

ηµνv
µ ≡ vν (658)
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satisfies the conditions stated in Def. 1.2; i.e, it is a dual vector (if we ”insert” a vector uν

on the equation above the result is a real number because we would be taking the scalar

product between vµ and uν). So, the metric naturally induces a mapping between the

space of vectors and dual vectors. Those two spaces are isomorphic, and it can be shown

that there is a one-to-one correspondence between its elements. This process, of starting

with a vector and using the metric to obtain a dual vector is what we call lower an index;

the inverse is called raise an index, and is done by using ηµν = diag(1,−1,−1,−1) on a

dual vector.

Let Λ and Θ be two Lorentz transformations. Look the product ΘΛ

ηµν = ηαβΛα
µΛβ

ν = ηγδΘ
γ
αΘδ

βΛα
µΛβ

ν = ηγδΘ
γ
αΛα

µΘδ
βΛβ

ν , (659)

but

Θγ
αΛα

µ = (ΘΛ)γµ, (660)

so ΘΛ is also a Lorentz transformation. Now, consider the inverse Λ−1.

(Λ−1)µνΛµ
α = δαν (661)

where δαν is the Kronecker delta (the identity matrix). When we look at the definition of

the Lorentz transformation,

ηαβΛα
µΛβ

ν = ηµν ⇒ (Λ−1)µγ(Λ−1)νδηαβΛα
µΛβ

ν = (Λ−1)µγ(Λ−1)νδηµν = δαγ δ
β
δ ηαβ = ηγδ. (662)

Hence,

(Λ−1)µγ(Λ−1)νδηµν = ηγδ. (663)

We see that ΛΘ and Λ−1 are Lorentz transformations. Clearly, the identity is also a

Lorentz transformation. Thus, the set of all Λ that satisfy (9) form a group.
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Definition

The set of Lorentz transformations form a group, the Lorentz group L.

Let’s explore this idea a little bit. The matrix for a Lorentz transformation is a

continous function of its components, which are real numbers. We therefore we can

say that two Lorentz transformations can be connected by a continuous curve of Λ’s.

However, not all Lorentz transformations can be directly connected to each other, because

a Lorentz transformation in one component can’t be connected to a transformation in

another component. To see this mathematically, consider (again) equation (9):

ηαβΛα
µΛβ

ν = ηµν ⇒ ΛTηΛ = η. (664)

Taking the determinant:

det(η) = det(ΛTηΛ)⇒ −1 = det(ΛT )det(η)det(Λ) = (−1)det(ΛT )det(Λ), (665)

but det(M) = det(MT ):

det(Λ)2 = 1⇒ det(Λ) = ±1. (666)

In addition, look at the zeroth element in (9):

η00 = Λα
0 Λβ

0ηαβ ⇒ 1 = (Λ0
0)2 −

3∑
µ=1

(Λµ
0)2 ⇒| Λ0

0 |≥ 1 (667)

Therefore, the determinant and the sign of the zeroth element must be constant on

any component. The whole thing breaks into four cases:

I) detΛ = 1, sgn Λ0
0 = +1, contains the identity

II) detΛ = -1, sgn Λ0
0 = +1, contains the space inversion

III) detΛ = 1, sgn Λ0
0 = −1, contains the space-time inversion
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IV) detΛ = -1, sgn Λ0
0 = −1, contains the time inversion

Definition

The space inversion Is, time inversion It and space-time inversion Ist are defined by,

respectively,

(Isv)0 = v0, (Isv)j = −xj, j 6= 0, (668)

(Itv)0 = −v0, (Isv)j = xj, j 6= 0, (669)

Istv
µ = −vµ. (670)

It can be shown that the Lorentz group is connected Lie group (we won’t do it here).

In addition, it is important to introduce some extra terminology.

Definition

If Λ0
0 ≥ 0, it is said to be orthochronous; if detΛ = 1, it is called proper. If detΛ = 1

and Λ0
0 ≥ 0, the transformation is said to be orthochorous.

Now, our next task is to find an explicit form for the matrix Λ. The simplest non-

trivial case for a transformation Λ is the one which mixes time and just one spatial

component, namely:

Λ =



a b 0 0

c d 0 0

0 0 1 0

0 0 0 1


Inserting this on (9) (ηαβΛα

µΛβ
ν = ηµν), we get:
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
a2 − c2 = 1

ab− cd = 0

b2 − d2 = 1

with solutions

a = d = coshχ (671)

b = c = −sinhχ (672)

Thus, our Λ looks like:

Λ =



coshχ −sinhχ 0 0

−sinhχ coshχ 0 0

0 0 1 0

0 0 0 1


All of this looks good, the only problem is that we have no idea of what χ and functions

of it mean. In order to get a better understanding, let’s see how this matrix acts on a

vector.

x′µ = λµνx
ν , (673)

y and z are left unchanged, and the x and t coordinates get mixed:

ct′ = (coshχ)ct− (sinhχ)x, (674)

x′ = −(sinhχ)ct+ (coshχ)x. (675)

One thing that we could impose is that dx′ = dy′ = dz′ = 0; physically this means that

we are interested in how a static observer in S ′ would see the effect of the transfomation

233



www.manaraa.com

on the event (t,x,y,z),

−c(sinhχ)dt+ (coshχ)dx = 0⇒ vx = ctanhχ (676)

dy = dz = 0 =⇒ vy = vz = 0. (677)

Therefore, this coordinate change is equivalent to going from a frame S to a frame S’ that

is moving with velocity v (given above) with respect to the frame S. Using the equation

for the hyperbolic tangent in terms of speed and the identity cosh2χ − sinh2χ = 1, one

gets:

sinh(χ) = γβ, (678)

cosh(χ) = γ, (679)

where

β =
v

c
, γ =

1√
1− β2

. (680)

Our matrix for the transformation is given by:

Λ =



γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1


Definition

The matrices Λ, which mix time and spatial components, are called Lorentz boosts.

If we write the components separetely, from the matrix above we get
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t′ = γ
(
t− vx

c2

)
, (681)

x′ = γ (x− vt) , (682)

y′ = y, (683)

z′ = z. (684)

Geometrically, we can see the effect that a boost has on the inertial frames. Consider,

for example, the event with coordinates

x′ = 0⇒ ct = β−1x, t′ = 0⇒ ct = βx. (685)

It is also possible to show that spatial rotations are also symmetry transformations.

The process to do so is analogous, so we ommit it.

So, let’s take a closer look on the structure of Special Relativity in a way that’s more

useful from the point of view of particle physics: the ”group theory” approach. Consider

the following (proper, orthocronous) matrices:

(B1)ab =



cosh(φ1) −sinh(φ1) 0 0

−sinh(φ1) cosh(φ1) 0 0

0 0 1 0

0 0 0 1



(B2)ab =



cosh(φ2) 0 −sinh(φ2) 0

0 1 0 0

−sinh(φ2) 0 cosh(φ2) 0

0 0 0 1


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(B3)ab =



cosh(φ3) 0 0 −sinh(φ3)

0 1 0 0

0 0 1 0

−sinh(φ3) 0 0 cosh(φ3)



(R1)ab =



1 0 0 0

0 1 0 0

0 0 cos(θ1) sin(θ1)

0 0 −sin(θ1) cos(θ1)



(R2)ab =



1 0 0 0

0 cos(θ2) 0 sin(θ2)

0 0 1 0

0 −sin(θ2) 0 cos(θ2)



(R3)ab =



1 0 0 0

0 cos(θ3) sin(θ3) 0

0 −sin(θ3) cos(θ3) 0

0 0 0 1


The B’s stand for the boosts, and the R’s for spatial rotations. The generators are

(K for boosts and J for rotations):

(K1)ab =



0 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0


, (K2)ab =



0 0 i 0

0 0 0 0

i 0 0 0

0 0 0 0


, (K3)ab =



0 0 0 i

0 0 0 0

0 0 0 0

i 0 0 0


. (686)
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(J1)ab =



0 0 0 0

0 0 0 0

0 0 0 −i

0 0 i 0


, (J2)ab =



0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0


, (J3)ab =



0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0


. (687)

They satisfy the following commutation relations:

[Ji, Jj] = iεijkJk,

[Ki, Kj] = iεijkKk,

[Ji, Kj] = −iεijkJk.

(688)

One can also define the following linear combinations of the generators:

S+
i =

1

2
(Ji + iKi), (689)

S−i =
1

2
(Ji − iKi), (690)

which satisfy:

[S+
i , S

+
j ] = iεijkS

+
k ,

[S−i , S
−
j ] = iεijkS

−
k ,

[S+
i , S

−
j ] = 0

.

(691)

So the Lorentz group is locally equivalent to SU(2)⊕ SU(2).
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11.2 4-momentum

In our theory of Special Relativity, spacetime is a 4 dimensional manifolds without

curvature, in which we define the Minkowski metric. Our next step is to study general

tensor fields in this spacetime and their physical consequences.

The first question that arises here (and in any time that we want to develop a theory

that is consistent with relativity) is why we need the tensor formalism. We saw how it

naturally arises when we begin to add structure on our manifolds from a mathematical

point of view, but we need a physical motivation. The main reason is because physics

should not depend on coordinate system or choices of inertial frames, as stated in one

of the postulates, and tensor fields are mathematical quantities that exist independently

of them. A tensor equation will always hold true, no matter what coordinate system

we choose to write it; thus, it makes perfect sense to try to do physics using the tensor

formalism. We will now begin our study of physical quantities defined under those terms.

Definition

Let ηµν represent the metric of our spacetime, and A and B denote two spacetime

events (two spacetime points) with coordinates xµA = (tA, xA, yA, zA), xµB = (tB, xB, yB, zB)

as seen by an observer in an arbitrary reference frame (note that the indices A and B are

not spacetime indices, they are her only to label the events). The quantity

∆s2 = ηµνx
µ
Ax

µ
B = −c2(tB − tA)2 + (xB − xA)2 + (yB − yA)2 + (zA − zB)2, (692)

is called invariant interval.

We have seen this before, when we were discussing the scalar product as we introduced

the initial concepts of Special Relativity. There are many conclusions that we can draw

from it. First, we notice that the result of this operation is a scalar, and its value

is independent of the reference frame (we saw in the previous section that changes of

coordinates leave this result unchanged); thus, it seems that scalars are a great way
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to define observables in our theory, since all oberservers, independently of their inertial

frame and coordinates will agree on the value.

Secondly, we take the fact that the quantity above is invariant under Lorentz transfor-

mations one step further. Geometrically, it is the equivalent of calculating a distance in

spacetime, what means that we can use to classify the separation of events in spacetime.

I) ∆s2 < 0⇒ Spacelike separation,

II) ∆s2 = 0⇒ Null separation,

III) ∆s2 > 0⇒ Timelike separation.

If we look at the light cone with vertex defined on the event A, if the event B lies outside

of it, the separation is spacelike; if it lies of the surfaceit is null, and if it is inside it is

timelike.

A set of connected points on the Minkowski spacetime can be used to define a curve

on it.

Definition

A curve in Minkowski space M is a smooth function, Γ : R→M,

Γ(λ) = (ct(λ), x(λ), y(λ), z(λ)) ∈M, (693)

where λ parametrizes the curve.

For a given curve, we can define the tangent vector

vµ =
dΓ(λ)

dλ
=

(
c
dt(λ)

dλ
,
dx(λ)

dλ
,
dy(λ)

dλ
,
dz(λ)

dλ

)
. (694)

The distance between two points infinitesimally close within the curve is given by

dΓ(λ) = Γ(λ+ dλ)− Γ(λ), (695)
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which can be rewritten as

dΓ(λ) = (dt(λ), dx(λ), dy(λ), dz(λ)) = dxµ(λ). (696)

On the other hand,

ds2 = cdt2 − dx2 − dy2 − dz2 = ηµνdx
µ(λ)dxν(λ)⇒ ηµνv

µvν =
ds2

dλ2
. (697)

We can extend the definition for the invariant inerval to the scalar product above, and

classify it as timelike, spacelike or null. A curve is said to be timelike, spacelike or null if

the vectors tangent to it are timelike, spcelike or null. In addition, we can see physically

see that a partilcle that has mass can not travel faster than light; therefore, particles

have timelike trajectories and light travels on null curves. Also, we can always find a

reference frame in which P and Q occur in the same point of space (see the geometric

interpretation of boost). In that frame, the invariant interval between those events is

given by

∆s2 = c∆t2 ⇒ ∆t′ =
1

c

√
∆s2. (698)

Suppose that we have a certain timelike curve. If we have two infinitesimally close

events as seen from an oberver in a refenrence frame where they happen at the same

point of space, the invariant interval between them is given by

dτ =

√
dt2

c
, (699)

and since the events are arbitrarily close, we can think of dτ as the time interval between

the events as measured by an observer which follows the spacetime trajectory of the

particle in question. In other words, it is the time interval as measured from the rest

frame of the timelike curve, and we can write

∆τ =

∫
Γ

dτ =
1

c

∫
Γ

√
ηµνvµvνdλ. (700)
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Note that since τ is given in terms of λ, we can reparametrize a timelike curve in

terms of τ . This motivates the following definition:

Definition

Let Γ be a timelike curve parametrized by τ . We call τ the proper time, and the

tangent vector parametrized by it

uµ =
dxµ

dτ
, (701)

the 4-velocity. It satisfies

ηµνu
µuν =

ds2

dτ 2
= c2. (702)

There is good physical reason to introduce quantities such as the proper time, which

are viewed from the point of view of the rest frame of the particle (or whatever is moving)

through spacetime. Suppose that we have two obervers in two different frame, and they

want to know, let’s say, what is the time interval between two events P and Q. They

might disagree on the value when each of them measures it on their own frames, but they

will always agree if they calculate the time interval as seen by the moving particle, on its

rest frame. In other words, all observers agree on the quantities measured from the rest

frame, as it provides a natural connection between them all. It is interesting to write a

few extra definitions at this point.

Definition

Scalars are quantities characterized by a numerical value that remains unchanged

upon changes of reference frames. Therefore, they are ideal to define observables in our

theory. Examples would be the invariant interval and the proper time.
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Definition

We define the 4-momentum of a particle of rest mass m and 4-velocity vµ as

pµ = mγ(c, ~v) = (E/c, ~p). (703)

Note that the energy that appears on the equation above is the energy measured by the

observers at rest on a lab frame, and the energy if the particle as measured by these

observers is given by

uµ = (c, 0)⇒ E = pµuµ = ηµνp
µuν . (704)

If we take an observer moving with the particle (on its rest frame uµ = vµ) we obtain the

rest energy,

E0 = pµuµ = mvµvµ = mc2. (705)

Now that we have defined 4-momentum, we are now ready to study collisions and

particle reactions. Note that this is a simplified approach on particle reactions, where we

only take momentum and energy into account. Other features will be approached later,

when we discuss quantum electrodynamics.

11.3 Mandelstam variables

In this section, we will expose the typical definition of Mandelstam variables, as

presented in [6].For high energy physics, it is convenient to define some variables to

describe particle reactions of the form

A+B → C +D, (706)

instead of directly working with the (relativistic invariant) scalar product of the 4-

momentum of the particles (the reason for this will become more clear when we study
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QED and unpolarized cross sections). We define

s = (pA + pB)2 = (pC + pD)2, (707)

t = (pA − pC)2 = (pB − pD)2, (708)

u = (pA − pD)2 = (pB − pC)2. (709)

Recall that

p2
n = m2

n, (710)

pA + pB = pC + pD, (711)

and we have

s+ t+ u =
∑
i

m2
i . (712)

If we go the center-of-mass frame we are able to explicitly evaluate the Mandelstam

variables (we will make ~p = ~~k = ~k, ~ = 1),

pA = (E,~ki), pB = (E,−~ki), pC = (E,~kf ), pD = (E,−~kf ), (713)

with E2 = k2 +m2. For ~ki.~kf = k2cos(θ), the variables become

s = 4(k2 +m2), (714)

t = −(~ki − ~kf )2 = −2k2(1− cos(θ)), (715)
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u = −(~ki + ~kf )
2 = −2k2(1 + cos(θ)). (716)

From the results above, we can see that s is a positive quantity, while t and u are negative

(cos(θ) ∈ [−1, 1] ⊂ R). If we have t or u equal to zero, we have forward or backward

scattering respectively.

We can consider other reactions, when we have antiparticles involved, for example.

Consider the following reaction:

A+ C̄ → B̄ +D. (717)

The antiparticles will have 4-momenta oppositeto the ones presented in the first equation,

namely

pB → −pB, pC → −pC , (718)

and we have the Mandelstam variables

s = (pA − pB)2, (719)

t = (pA + PC)2), (720)

u = (pA − PD)2). (721)

In this situation, t is positive (the squared energy) and the other variables are zero or

negative. Finally, we present one more example:

A+ D̄ → B̄ + C, (722)

s = (pA − pB)2, (723)
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t = (pA + pC)2, (724)

u = (pA − pD)2, (725)

which is the case in which u is the positive variable.

As we can see, in all of those cases we have a variable that was positive and equal

to the nergy of the center of mass frame, while the other two could be zero or negative

numbers. We can see that they represent the square of the moemntum transfer between

particles (in the first example t is the transfer between A and C while u is the transfer

between A and D). This allows us to classify those reactions into three channels:

I) s > 0, t ≤ 0, u ≤ 0: s channel,

II) t > 0, s ≤ 0, u ≤ 0: t channel,

III) u > 0, s ≤ 0, t ≤ 0: u channel.
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12 Appendix B - Gauge Theories

12.1 Gauging the symmetry

Consider the Dirac Lagrangian for a free particle,

LD = ψ̄(iγµ∂µ −m)ψ, (726)

and one can easily verify that the transformation

ψ → eiαψ, (727)

leaves the Lagrangian invariant. At this point, we want to implement interactions in our

theory, but we want to do it in a somehow more systematic way. Our first attemp is to

try to improve the Lagrangian we obtained, by studying its symmetries a bit more. The

free Lagrangian was obtained mainly by the use of the Clifford algebra, which is closely

related to the Poincaré group.

Well, as mentioned above, the Lagrangian is invariant under a certain transformation,

which happes to be a global U(1) gauge transformation. The lesson we learned in the

derivation of the free Lagrangian was that by imposing symmetry, some structure arise (in

that case, we started with the Lorentz invariance). Since imposing totally new symmetries

seems unnatural, we will try to work and improve what we have: the U(1) symmetry.

A first step towards generalization is to make the global symmetry a local one; this

process is called gauging the symmetry. Now, suppose that the phase is now a function

of spacetime points,

α→ α(xµ). (728)

If we apply this transformation on the Lagrangian,

LD = ψ̄(iγµ∂µ −m)ψ → LD = ψ̄e−iα(xµ)(iγµ∂µ −m)eiα(xµ)ψ, (729)
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we realize that the diferential operators now act on the phases,

LD = ψ̄e−iα(xµ)(iγµ∂µ −m)eiα(xµ)ψ = LD = ψ̄(iγµ∂µ −m)ψ − (γµ∂µα(xµ))ψ. (730)

We see that the Lagragian is not invariant, we have an extra term, and to have

invariance it must be eliminated. To find the answer to this problem, we need to have a

better understanding of what we just did, i.e., a better understanding of the consequences

of the local gauge transformation.

A bit more though gives a hint: the problem lies within the derivative. In a field

with a global symmetry, the phase convention is universal, the field is affected in the

same way, everywhere by the gauge transformation. Well, a derivative can be thought as

a difference, and since the same phase was applied everywhere, we can still study how

the field changes from point A to point B. To illustrate this a bit, consider the complex

plane, and two complex numbers, z1 and z2. Suppose that we are interested in calculating

d =| z2 − z1 |, before and after a U(1) global gauge transformation, eiα.

We see that d =| z2−z1 | was not affected at all. But if we apply a local transformation,

the phase that z1 gets can be different from the phase z2 gets, and | z2 − z1 |6=| z2e
iα2 −

z1e
iα1 |; we see that the usual notion of derivative becomes meaningless. The conclusion

is that we need to be able to compare the field at different points, so that we can define

a proper derivative operator.

It is necessary to define a new field, the Wilson line.

Definition

Let xµ and xν correspond to two spacetime points. The Wilson line is a field which

depends on those spacetime points, and transforms as

Φ(xµ, xν)→ eiα(xµ)Φ(xµ, xν)e−iα(xν), Φ(xµ, xµ) = 1. (731)
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The job of the Wilson line is to ”transport” the gauge from a point A to a point B.

Now, consider the quantity Φ(xµ, xν)ψ(xµ) − ψ(xν). Under the local gauge transfor-

mation,

Φ(xµ, xν)ψ(xµ)− ψ(xν)→ eiα(xµ)Φ(xµ, xν)e−iα(xν)eiα(xν)ψ(xµ)− eiα(xν)ψ(xν)

= eiα(xµ)(Φ(xµ, xν)ψ(xµ)− ψ(xν)),

(732)

and this is well defined. We can use this to define a covariant derivative,

Dµψ(xµ) = lim
ε(xµ)→0

ψ(xµ + ε(xµ))− Φ(xµ, xµ + ε(xµ))ψ(xµ)

ε(xµ)
, (733)

which trasforms as

Dµψ(xµ)→

lim
ε(xµ)→0

eiα(xµ)Φ(xµ, xµ + ε(xµ))e−iα(xµ+ε(xµ))eiα(xµ+ε(xµ))ψ(xµ + ε(xµ))− eiα(xµ)ψ(xµ)

ε(xµ)

lim
ε(xµ)→0

eiα(xµ) Φ(xµ, xµ + ε(xµ))ψ(xµ + ε(xµ))− ψ(xµ)

ε(xµ)
= eiα(xµ)Dµψ(xµ).

(734)

We will use this new derivative operator, Dµ, to replace our usual partial derivative.

However, we need a more explicit form of it, since we don’t want to be calculating it by

its limit definition all the time. In order to do so, we recall the definition of the Wilson

line,

Φ(xµ, xµ) = 1⇒ Φ(xµ + εµ(x), xµ) ≈ 1− ie ε(xµ)Aµ(xµ) +O(ε)2. (735)

The equation above is accurate up to first order, with respect to an infinitesimal

displacement. We introduced two parameters, for the sake of generality: a constant of

proportionality, e, and a field Aµ, which accounts for the fact that the first order term
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may be a function of the point xµ. Going back to the definition of the covariant derivative,

Dµψ(xµ) = lim
ε(xµ)→0

[ψ(xµ + ε(xµ))]− [1− ie ε(xµ)Aµ(xµ)]ψ(xµ)

ε(xµ)

= lim
ε(xµ)→0

ψ(xµ + ε(xµ))− ψ(xµ) + ie ε(xµ)Aµ(xµ)ψ(xµ)

ε(xµ)

= lim
ε(xµ)→0

(∂µψ(xµ))ε(xµ) + ie ε(xµ)Aµ(xµ)ψ(xµ)

ε(xµ)

= [∂µ + ieAµ(xµ)]ψ(xµ).

(736)

We are interested in finding out how the field Aµ transforms. Thus, look again at how

the Wilson line transforms,

Φ(xµ + εµ(x), xµ)→ eiα(xµ,xµ+εµ(x))Φ(xµ + εµ(x), xµ)e−iα(xµ)

= eiα(xµ,xµ+εµ(x))[1− ie ε(xµ)Aµ(xµ)]e−iα(xµ),

(737)

which implies:

1− ie ε(xµ)Aµ(xµ)→ eiα(xµ+εµ(x))[1− ie ε(xµ)Aµ(xµ)]e−iα(xµ)

= [eiα(xµ) + (∂µe
iα(xµ))εµ(x)][1− ie ε(xµ)Aµ(xµ)]e−iα(xµ)

= [eiα(xµ) + (∂µe
iα(xµ))εµ(x)− eiα(xµ)ie ε(xµ)Aµ(xµ) +O(ε)2]e−iα(xµ)

= eiα(xµ)

(
1− ie

[
Aµ(xµ)− 1

e
(∂µα(xµ))

]
εµ(x)

)
e−iα(xµ),

(738)

and we obtain the transformation rule,

Aµ → Aµ −
1

e
∂µα(xµ). (739)

In the context of differential geometry, the field Aµ is a connection, just like the Christoffel

symbol in General Relativity. It also contains a very deep geometrical meaning, but we

will not discuss it here; we will leave it to a later moment. In our context, we refer to Aµ
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as the gauge field.

The final missing element here is a closed form for the Wilson line. We will proceed

just as we do in Group Theory with the generators and the exponential map. We have:

1 + ie ε(xµ)Aµ(xµ)⇒ Φxµ→xν = exp

(
−ie

∫ xν

xµ
Aµ(xσ)dxµ

)
, (740)

where the integral above is a line integral from the initial point to the final. We can

parametrize the path, and changing the notation sligthly, we write:

ΦA→B = exp

(
−ie

∫ B

A

Aµdx
µ

)
. (741)

One may verify this actually satisfies the transformation law that defines the Wilson

line under the local gauge transformation we have been working with (recall that in our

notation, the point A is a label for xµ and B for xν .

ΦA→B = exp

(
−ie

∫ B

A

Aµdx
µ

)
→ exp

(
−ie

∫ B

A

(Aµ −
1

e
∂µα)dxµ

)
= exp

(
−ie

∫ B

A

Aµdx
µ + i

∫ B

A

∂µα dx
µ

)
= exp

(
−ie

∫ B

A

Aµdx
µ + i(α(xµ)− α(xν))

)
= eiα(xµ)ΦA→Be

−iα(xν).

(742)

The endpoints may form a closed path;

ΦC = exp

(
−ie

∮
Aµdx

µ

)
, (743)

and this is called a Wilson loop. From the check we just performed, we see that when

the loop is closed, the integral is locally gauge invariant (its result do not change if we

perform a gauge transformation because the phase difference α(xµ)− α(xν) vanishes).

It is important to getter a bettter understanding of the Wilson loop, and so we use

Stoke’s Theorem,
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ΦC = exp

(
−ie

∮
Aµdx

µ

)
= exp

(
−ie

∫
Fµνdσ

µν

)
, (744)

where dσµν is the area element. Let’s explore the newly defined quantity Fµν , the field

strength.

Our main task is to find an expression for Fµν . It is not really very helpful to start

with the right-hand side of the equation above, so we will begin with the left-hand side,

since we are more familiar with the Wilson loop. The derivation will not be rigorous uo

to a mathematician’s standards, but we hope to provide some more insight on the nature

of these quantities and the Stokes Theorem.

Consider a usual derivative, and a certain real function f,

df

dx
= lim

ε→0

f(x+ ε)− f(x)

ε
⇒ f(x+ ε) = f(x) + ε

df

dx
. (745)

We can think of the derivative as generating the transport of the function, from being

evaluated at x and then at x + ε. In our case, the same idea still applies, but we use

a generalized derivative operator, the covariant Dµ, which tells us how to ”walk” in our

more complicated space, where the local gauge transformations are allowed. The key for

this is the gauge field, Aµ; in differential geometry, Aµ is reffered to as a connection, and

the motivation comes from this idea.

Suppose now that we have a field φ (scalar, spinor, an arbitrary field), and we want to

”transport” it around a loop, a very small one. Following the ideas of the last paragraph,

we can argue that since the covariant derivative is related to ”transporting” the field,

whichever phase that the φ acquires by going around the loop will be directly related to

the derivatives. Since our loop is very small and the field is arbitrary, we can focus our

attention on the derivatives, and forget about the rest.

Going around the loop above can be thought as applying the derivatives on the field,

but in a different order. The total change around the loop is related to:

251



www.manaraa.com

DµDν − (DνDµ) = [Dµ, Dν ], (746)

where the first term (of the left hand side) accounts for the path O → A → B, and the

second term accounts for B → A′ → O. We can calculate this quantity explictly,

DµDνφ = (∂µ+ieAµ)(∂ν+ieAν)φ = ∂µ(∂νφ)+ie(∂µAν)φ+ieAmu(∂νφ)−e2AµAνφ, (747)

now, DνDµφ:

DνDµφ = (∂ν + ieAν)(∂µ+ ieAµ)φ = ∂ν(∂µφ)+ ie(∂νAµ)φ+ ieAν(∂µφ)−e2AνAµφ, (748)

subtracting,

(DµDν −DνDµ)φ = ie(∂µAν − ∂νAµ + ie[Aµ, Aν ])φ. (749)

The U(1) group is Abelian, which implies [Aµ, Aν ] in this specific case. Now, this

motivates us to define:

[Dµ, Dν ] =
i

e
Fµν , (750)

because of the way it transforms. Now we go back to the integral of the Wilson loop.

According to Stokes Theorem, we need to take the curl of Aµ,

−ie
∮
Aµdx

µ = −ie
∫
dσµν(∇µAν −∇νAµ), (751)

but

∇µAν −∇νAµ = (∂µ + ieAµ)Aν − (∂ν + ieAν)Aµ = ∂µAν − ∂νAµ + ie[Aµ, Aν ], (752)
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which is precisely the definition of the field strength. We are led to make the identification

−ie
∮
Aµdx

µ = −ie
∫
dσµν [Dµ, Dν ] =

∫
dσµνFµν . (753)

In differential geometry the commutator of two covariant derivatives is related to the

curvature of the space in which the connections (and therefere the covariant derivatives)

are defined, a concept that is one of the key elements in General Relativity. In that

theory, the curvature is governed by Einstein’s equations, which dictate the dynamics of

matter, energy and the spacetime curvature itself.

Now we know what the field strength is and how it relates to the Wilson loop, which

is a locally gauge invariant quantity and therefore an observable (we will explore this

concept in further detail on the next section), we are interested in include the dynamics

of the gauge field Aµ in our theory. In order to do so, we need a kinetic term on the

Lagrangian. That term needs to be a scalar, and invariant under Lorentz and the local

gauge transformation. Consider a collection of field strength tensors, which transforms

as

FαβFγδ...Fµν → eiθ(x)FαβFγδ...Fµνe
−iθ(x). (754)

Taking the trace of the equation above and using its cyclicity,

Tr(FαβFγδ...Fµν)→ Tr(eiθ(x)FαβFγδ...Fµνe
−iθ(x))

= Tr(e−iθ(x)eiθ(x)FαβFγδ...Fµν) = Tr(FαβFγδ...Fµν),

(755)

and we see that the trace is gauge invariant. The simplest combinatton we can think of

is something proportional to

Lkin α FµνF µν . (756)

We set the constant as -1/4 for convenience (in the end we are trying to derive electro-

magnetism). Finally, we need to include a source term for Aµ,
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Lsource = −JµAµ. (757)

Our full Lagrangian is

LD = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν − JµAµ, (758)

which turns out to be the correct one. The focus of this section was more mathematical,

and even though we paid attention to the motivation to include and construct the terms

in the Lagrangian, we did not dicusses the physical meaning of them in detail. We leave

this to the next sections.

12.2 Yang- Mills Theory

12.2.1 The non-Abelian case

As we saw before in the spin-half case, gauging a symmetry allows us to express an

interaction in QFT. In this section, we will generalize the procedure, which will allow

us to use more complicated groups, even non-Abelian ones. Our discussion will be more

straightfoward, since the motivation and the ideas are essentially the same for the U(1)

case.

Assume a certain group, SU(N). Let L denote a Lagrangian density, composed, as

usual, by N scalar or spinor fields, which we denote as φi. Suppose that the symmetry

φi → U j
i φj, (759)

leaves the Lagrangian unchanged (U is an operator induced by the Lie group, a N x

N matrix). In order to mimic the procedure used in obtaining the interacting Dirac

Lagrangain, we need to define a gauge field and a covariant derivative, which also contains

the charge of the field. Kinetic terms and sources for the gauge field are defined as well,

and we can implement interactions in a perturbative fashion, up to as amny orders as

considered necessary.
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In general, our group element U can be written as

U(x) = e−igθa(x)Ta , [T a, T b] = ifabcT
c. (760)

Note that the N2 − 1 parameters θa are local, and g is a constant.

The next step is to give a prescription of how our gauge field transforms. Now, let’s

denote the gauge field by Aµ. Note that since the gauge field is generated by infinitesimal

transformations, it can be decomposed in terms of the generators ta of the Lie group.

Let’s write the covariant derivative as

Dµ = IN×N∂µ − CAµ ⇒ Dµφi = ∂µφi − CAµφi, (761)

where C is to be determined. Since each component of Aµ is an N ×N matrix, we need

to multiply the partial derivative by the unit matrix of the correponding dimension. The

action of such an operator in a scalar field is given by

(Dµφ)i = ∂µφj(x)− C[Aµ]ijφj(x), (762)

making it clear that we are working with matrices in general. For the sake of simplicity,

we will ommit uneccessary indices in the following derivation. Back to our problem, after

the transformation U, the covariant derivative becomes

Dµ → D′µ = UDµ, (763)

and can be written as:

(Dµφi)
′ = ∂µφ

′
i − C(Aµφi)

′. (764)

We are interested in the gauge field, so we will try to work with A′µ.

C(Aµφi)
′ = ∂µφ

′
i − (Dµφi)

′. (765)

Now, we need to express our transformed scalar field (and its partial derivatives) in a
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more convinient way. Our field φi and its partial derivatives transforms as:

φi → φ′i = Uφi, ∂µφ
′
i = ∂µ(Uφi) = (∂µU)φi + U∂φi, (766)

and the covariant derivative, by definition,

Dµφi → (Dµφi)
′ = UDµφi. (767)

Therefore, we have:

C(Aµφi)
′ = ∂µφ

′
i−(Dµφi)

′ = (∂µU)φi+U∂φi−UDµφi = (∂µU)φi+U(∂φi−Dµ)φi. (768)

Finally, note that one may write

φi = U−1φ′i, (769)

which implies

C(Aµφi)
′ = ((∂µU)U−1 + UCAµU

−1)φ′i. (770)

Since we imposed no restriction over the field φi, it remais arbitrary. This implies the

following transformation law:

Aµ → A′µ =
1

C
(∂µU)U−1 + UAµU

−1. (771)

Aµ → A′µ =
1

C
(∂µU)U−1 + UAµU

−1, (772)

For the case of an unitary operator, U−1 = U †. One may also be interested in raising an

index with the metric.

Aµ → Aµ′ =
1

C
(∂µU)U † + UAµU † (773)
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Geometrically, this result resembles a rotation in a complex scenario, except for the fact

that it also has the extra term with the operator’s derivative.

It is important to perform a consistency check of the results obtained so far; if we

redefine C = ig and consider a U(1) transformation,

U = eigθ(x) ⇒ Aµ → Aµ + ∂µθ(x), (774)

we are able to recover the result of the spin half field.

Listing our results, we have:

(Dµφ)i = ∂µφj(x)− ig[Aµ]ijφj(x), (775)

Aµ → Aµ′ = − i
g

(∂µU)U † + UAµU † (776)

Fµν(x) =
i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ], (777)

where Fµν is our field strength. Note that the commutator [Aµ, Aν ] vanishes for

Abelian groups. We will not explore the geometrical meaning of these quantities so much

here, so we keep focused on our goal. More detail will be found when we start looking at

General Relativity in the next chapter.

Now, we consider the Wilson line. In the context of non-Abelian groups, the integral

contains now Aµ(x), which does not necessarily commute at different points. Therefore,

we introduce a path-ordering:

ΦA→B = P

{
exp

(
ig

∫ 1

0

ds
dxµ

ds
Aµ(x)

)}
. (778)

ΦA→B needs to be unitary if we want changes in phase to conserve probability.

We need to find a way of introducing the field strength in a kinetic term if the

Lagrangian. We pick:
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Lkin = −1

2
FµνF

µν . (779)

The conclusion is that by following the procedure above, every Lie group defines a

gauge field, and therefore, describes an interaction. It is important to mention that the

representations that will be useful for us are the adjoint, the Fundamental and anti-

Fundamental (see Appendix A).

12.3 Gravity

In the gravitational physics context, it is not possible to define observers that are

totally isolated from the interactions of the system, because everything is coupled to the

gravitational field. One can not simply define an isolated background (what we normally

refer to as the ”lab frame” as in non gravitational physics); the solution for this is just

to accept that spacetime is not flat, and that all the bodies fall into geodesics defined in

a curved spacetime.

The consequences of this treatment is that gravity is no longer treated as a force,

but implemented as the very structure of spacetime: the geodesics (observers) are now

consistent with the equivalence principle. As an additional constraint, all equations must

be reduced to the ones obtained in Special Relativity when the limit for a flat metric is

taken.

Postulate - The Equivalence Principle

There is no difference in the outcome of a physical experiment performed in a suf-

fciently small freely falling laboratory over a sufficiently small amount of time and the

same experiment in an inertial frame in free space.

This last version makes essentially states that at least locally, there is no difference

between following a geodesic or being in free space. Thus, following our geodesics is the
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equivalent of ”being in a inertial frame at rest” in a curved spacetime; locally, a general

spacetime ”looks like” flat spacetime.

When dealing with non-gravitational physics, a certain approach is commonly used to

describe phenomena. First, one defines observers that are not affected by the interactions

that take part in the physical system studied, so that they can be used to define an inertial

frame. Then, by the use of test bodies and the way they interact, one extracts information

about the system.

The problem with this approach when studying gravitational physics is that there is

no way of constructing inertial observers in the sense of non-relativistic physics, since ev-

erything is coupled to the gravitational field; there is no way of defining a ”background”.

General relativity then accepts the fact that we can’t construct inertial observes in the

usual sense; it postulates that spacetime is not flat, and free falling bodies in a gravita-

tional field are the geodesics in a curved spacetime. The geodesics (observers) agree with

the equivalence principle, and gravity is no longer a force, but the very structure of the

spacetime. In addition, when working with General relativity we also require that our

equations reduce to the ones in special relativity when the metric is flat.

12.3.1 Gravity as a Gauge Theory

Well, we can, in a very loose way, think of General Relativity as Special Relativity

together with a new postulate, the Principle of Equivalence. From that perspective, we

can draw interesting conclusions.

The first thing we notice is the result of enforcing the Principle of Equivalence in

our theory; it defines a local equivalence between a spacetime with gravity (freely falling

laboratory) and an inertial frame in free space, i.e., in the absence of gravity, as studied

in Special Relativity. As defined previously spacetime is a 4-dimensional manifold, and a

spacetime with gravity needs to be, according to the Principle of Equivalence, locally flat.

Note that we have no contraints over the global nature of spacetime, and in fact the most

general solution to our problem is to have a spacetime that is curved but locally ”looks

like” Minkowski spacetime. This idea is actually familiar to us; for example: we know
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that Earth’s surface is curved, but locally it looks flat (this actually mislead mankind for

centuries).

In order to see this mathematically, consider the next proposition.

Proposition

Given a metric in a certain component system, it is always possible to find, for a given

point p, new coordinates such that

gαβ

∣∣∣
p

= ηαβ. (780)

Proof. Given a certain coordinate system, the metric can be written as a 4x4 real sym-

metric matrix at point p. However, from linear algebra, any real symmetric matrix can be

diagonalized by a linear transformation. When written in diagonal form, we can rescale

the coordinates by constant factors such that all entries of the metric are ±1.

Another property our spacetime must have is that the physics should not depend on

the coordinate system adopted, as in Special Relativity; the Principle of Equivalence does

not affect this. If General Relativity does not depend on the coordinate system, i.e, the

physics is left unchanged under the change of the coordinate system, this is a symmetry

of our theory.

If we have two manifolds M and N related by a diffeomorphism, they have the same

manifold structure. With this in mind, suppose that we have a collection of tensor fields

defined on M . We may write:

(M, {T})→ (N, {φ?T}), (781)

via φ. As far as physics is concerned, we can’t distinguish between the manifolds and

their tensor fields; any physical statement regading one of the manifolds will be satisfied

by other. Note that this is not the case if the manifolds are not diffeomorphic. We can

say that diffeomorphisms are the ”gauge freedom” of any theory that is based on tensors

on spacetime manifolds. In particular, General Relativity.
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Let (U1, ψ1) and (U2, ψ2) be two charts, which overlap on the region U1∩U2 = O. For

smooth and invertible (with smooth inverse) mappings, the coordinate transformation

ψ2 ◦ ψ−1
1 : Rn → Rn, (782)

is a diffeomorphism. Physics is independent of the coordinate choice, so coordinate

transformations can be though as a ”gauge symmetry” of the theory. Under a general

change of coordinates,

∂µ → ∂′µ =
∂xν

∂x′µ
∂ν , (783)

dxµ → dxµ′ =
∂x′µ

∂xν
dxν . (784)

In order to follow the notation used in previous sections, we define:

Uµ
ν (x) =

∂x′µ

∂xν
, (785)

[U−1]µν (x) =
∂xν

∂x′µ
, (786)

and those can be viewed as local transformations. Since the transformation is local, we

have

∂µU
µ
ν 6= 0, (787)

and the partial derivatives of vectors, dual vectors and tensor fields do not transform

properly under our symmetry transformation, the change of coordinates. Furthermore,

we would like to enforce some constraints in our derivative operator. Let R and S be two

arbitrary tensor fields and f a scalar function,

I) Linearity: ∇a(αR + βS) = α∇a(R) + β∇a(S), ∀R, S ∈ τ(m, s), α, β ∈ R,

II) Leibnitz rule: ∇a(RS) = (∇aR)S +R(∇aS), ∀R, S ∈ τ(m, s),
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III) Commutativity with contraction: ∇d(R
a1,...,c,...,am
b1,...,c,...,bs

) = (∇dR
a1,...,c,...,am
b1,...,c,...,bs

),

∀R, S ∈ τ(m, s),

IV) Consistency with diretional derivatives on scalar fields as tangent vectors: v(f) =

va∇a(f)

V) Torsion free: ∇a∇bf = ∇b∇af .

It is interesting to mention that the last condition is sometimes dropped in alternative

theories of gravity (but not in General Relativity).

Following the procedure on the Yang-Mills section, we now write

∂a → ∇a, (788)

which acts on dual vectors as

∇aωb = ∂aωb − Γcabωc. (789)

Γcab is a symmetric tensor field, and is called the Christoffel symbol.Note that by writing

the derivative operator in this way our constraints are satisfied. However, our derivation

is still not complete; in order to find out how this derivative operator acts on vectors.

From property (4), by considering the result of the contraction ωbv
b (a scalar), one obtains

∇av
b = ∂av

b + Γbacv
c, (790)

which implies for a general tensor field,

∇aT
b1...bn
c1...cm

= ∂aT
b1...bn
c1...cm

−
∑
i

ΓbiadT
b1...d...bn
c1...cm

+
∑
j

ΓdacjT
b1...bn
c1...d...cm

. (791)

12.3.2 The metric and the Levi-Civita connection

In order to better understand the covariant derivative, we will list now a few results.

For details on the proofs, see [9].

262



www.manaraa.com

Proposition

Any two derivative operators defined in a manifold are related by a symmetric tensor

field Scab. In the context of General Relativity, we denote this field by Γcab.

Theorem

Let M be a manifold, which possesses the metric gab. Then

∇c gab = 0, ∀p ∈M, (792)

holds true for a unique derivative operator.

Proof. The proof will follow through construction. We will find a way of expressing the

Christoffel symbol in terms of the metric. We know how a derivative operator acts on a

(0, 2) tensor,

0 = ∇agbc = ∂agbc − Γdabgdc − Γdacgbd. (793)

Now, the condition ∇cgab = 0 holds true if and only if

∂agbc = Γcab + Γbac. (794)

If we started the derivation with indices chosen as ∇cgab, we would have a different

appearence on the equation above. With that in mind, we consider permutations of the

indices,

∂cgab = Γbca + Γacb, (795)

∂bgac = Γcba + Γabc, (796)

We will add eq. (?) and (?) and subtract (?) (add the first, the third and subtract the

second), and use the symmetry of Γabc to write
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2 Γcab = ∂agbc + ∂bgac − ∂cgab ⇒ Γcab =
1

2
gcd (∂agbd + ∂bgad − ∂dgab) . (797)

This expression for Γcab is unique and satisfies ∇cgab = 0. In diffferential geometry, the

tensor field that appears in the covariant is called a connection, and the field Γabc is known

as the Levi Civita connection.

12.3.3 Killing vector fields and Lie algebras

At this point, one might be thinking about the relation between the derivative operator

and the Lie derivative we defined a while ago, when we were introducing the concept of

manifolds, specially after all the work done related to diffeomorphisms.

The Lie derivative induces a translation of the tensor field (in which we are operating)

by the use of a certain diffeormorphism, and then calculates the difference of the induced

tensor field and the usual tensor at a point p. However, if a tensor does not change under

the diffeormorphism, for example,

φ?tgab = gab, (798)

then we expect its Lie derivative to be zero. The next definition explores this idea.

Definition

A diffeomeorphism is an isometry if and only if

£ξ gab = 0. (799)

Definition

Let {φt} be a set of one-parameter diffeomorphisms, φt : M → M which are also

isometries,
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φ?tgab = gab. (800)

The vector field which generates φt is called a Killing vector field.

From the definitions and ideas discussed, we see that a diffeomeorphism is an isometry

if and only if

£ξ gab = 0. (801)

Thus, if we apply the definition of the Lie derivative for a general tensor field:

£ξ gab = ξc∇cgab + gcb∇aξ
c + gac∇bξ

c, (802)

and use the property ∇cgab = 0, we have

£ξ gab = ξc∇cgab + gcb∇aξ
c + gac∇bξ

c = 0, (803)

0 = gcb∇aξ
c + gac∇bξ

c = ∇a(gcbξ
c) +∇b(gacξ

c), (804)

and finally,

∇aξb +∇bξa = 0. (805)

This is called the Killing’s equation.

As we can see, the Killing vectors carry information about the symmetries in the

metric, and they actually help in making the study of symmetries of the metric more

”concrete”. It is useful now to consider an example.

Consider the following metric (the Schwarschild metric, in Schwarschild coordinates)

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2θdφ2). (806)
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One way of finding the Killing vectors is by attacking the Killing equation directly. In

other words, obtaining all the Christoffel symbols for this metric, writing the expression

for the covariant derivative and solving the differential equation. Another way is by

directly inspecting the metric and checking the dependence on the coordinates.

The coordinates we are using here are (t, r, θ, φ). Note that, for instance, the metric

does not have a functional dependence on the time; thus, we have a Killing vector

ξµ = (1, 0, 0, 0). (807)

It can also be shown that the commutator of two Killing vector fields is also a Killing

vector field,what implies that the set of Killing vectors fields of a manifold forms a Lie

algebra.

We conclude this discussion by considering a very intersting example, in the spirit

of [13]: the metric of the unit S2 sphere. Note that this metric is part of many metrics

of General Relativity, such as the Schwarzchild metric (which is actually a spherically

symmetric solution).

ds2 = dθ2 + sin2(θ)dφ2, (808)

which yelds the following equations for the Killing vectors:

2∂θξ
θ = 0, (809)

2∂φξ
φ + 2sin(θ)cos(θ)ξθ = 0, (810)

∂φξ
θ + ∂θξ

φ − 2cot(θ)ξφ = 0. (811)

From the first equation, there is no explicit dependence on θ as the partial derivative

indicates. Thus, ξθ is a function of φ only; using this result on the second equation,
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∂φξ
φ = −sin(θ)cos(θ)ξθ = −1

2
2sin(θ)cos(θ)ξθ = −1

2
sin(2θ)ξθ, (812)

Since this equation involves a partial derivative, if we solve it by integration we need to

introduce a function f(θ),

ξφ = −1

2
Fsin(2θ) + f(θ), ξθ =

dF

dφ
. (813)

From the last equation,

−Fcos(2θ) +
df

dθ
c+

dξθ

dφ
+ 2cot(θ)

(
1

2
Fsin(2θ)− f(θ)

)
= 0

⇒ df

dθ
− 2cotθf(θ) = −

(
dξθ

dφ
+ F

)
,

(814)

which are differential equations on independet variables. Thus, we can introduce a con-

stant C such that

df

dθ
− 2cotθf(θ) = −

(
dξθ

dφ
+ F

)
= C. (815)

Solving each of the equations:

f(θ) = (C ′ − Ccotθ)sin2θ, (816)

ξθ = Asin(φ) +Bcos(φ), (817)

and all of this implies

ξφ = (Acosφ−Bsinφ)sinθcosθ + C ′sin2θ. (818)

We can write a Killing vector field as

ξθ∂θ + ξφ∂φ = ALy +BLx + C ′Lz, (819)
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with the generators of SO(3):

Lx = −cosφ ∂θ + cotθsinφ ∂φ, (820)

Ly = sinφ∂φ + cotθcosφ∂φ, (821)

Lz = ∂φ. (822)
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13 Appendix C - Gamma matrices

Here, we list some identities involving Gamma matrices and slashed quantities.

13.1 Dirac representation

γ0 =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


, γ1 =



0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


, (823)

γ2 =



0 0 0 −i

0 0 i 0

0 0 i 0

−i 0 0 0


, γ3 =



0 0 1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0


, (824)

γ5 = γ0γ1γ2γ3 =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


, (825)

but also,

γ5 = εµναβγ
µγνγαγβ. (826)

where ε is the Levi-Civita symbol.

For the metric signatute (+ - - - ),

{γµ, γν = 2ηµν}, (827)

γµ = ηµνγ
µ ⇒ γµ = {γ0,−γ1,−γ2,−γ3}. (828)
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13.2 Identities

γµγµ = 4I, (829)

γµγνγµ = −2γν , (830)

γµγνγργµ = 4ηνρI, (831)

γµγνγαγβγµ = −2γβγαγν (832)

γµγνγα = ηµνγα + ηναγµ − ηµαγν − iεβµναγβγ5. (833)

13.3 Traces

The trace operator Tr satisfies

Tr(A + B) = Tr(A) + Tr(B), (834)

Tr(cA) = cTr(A), (835)

Tr(ABC) = Tr(CAB) = Tr(BCA). (836)

Denoting /a = γµa
µ,

I) Tr(γµ)− Tr(γµ)

II) TrI = 4 (we are working with 4x4 matrices)

III) Trace of an odd number of γµ’s vanishes.
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IV) Tr(/a/b) = 4 a . b

V) Tr(/a/b/c/d) = 4[(a . b)(c . d)− (a . c)(b . d) + (a . d)(b . c)]

VI) Tr(γ5) = 0

VII) Tr(γ5) = −Tr(γ5).

VIII) Tr(γ5/a/b) = 0.

IX) Tr(γ5/a/b/c/d) = 4i εµνλσ aµ bν cλ dσ

X) γµγ
µ = 4

XI) γµ/aγ
µ = −2/a

XII) γµ/a/bγ
µ = 4a . b

XIII) γµ/a/b/cγ
µ = −2/c/b/a.

XIV) Tr(γµ/p1
γν/p2

) = 4 [pµ1pν2 + pµ2pν1 − gµν(p1 . p2)]

XV) Tr[γµ(mathbbI− γ5)/p1
γν(I− γ5)/p2

] = 2Tr(γµ/p1
γν/p2

) + 8iεµανβp1αp2β

XVI) Tr(γµ/p1
γν/p2

)Tr(γµ/p3
γν/p4

) = 32[(p1 . p3)(p2 . p4) + (p1 . p4)(p2 . p3)]

XVII) Tr(γµ/p1
γνγ5/p2

)Tr(γµ/p3
γνγ

5/p4
) = 32[(p1 p3)(p2 . p4)− (p1 . p4)(p2 . p3)
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14 Appendix D - Effective coupling

To determine the value of Gq/mq we look back at (499) along with the SM Yukawa in-

teraction term, which involves the mixing of both scalar fields, h1 and h2. For interactions

of WIMPs with SM quarks, the relevant terms are

L =
mq cos θ

〈φ〉
h1,2ψ̄qψq−

mqsinθ

〈φ〉
h2,1ψ̄qψq+· · ·+

fsinθ

2
h1,2ψ̄−ψ−+

f cos θ

2
h2,1ψ̄−ψ−. (837)

The scattering of a w particle off a quark then gives

M = i
fmqsinθ cos θ

〈φ〉
ūq(p

′) uq(p)

(
1

t−m2
h1,2

− 1

t−m2
h2,1

)
ū(k′) u(k)

≈ i
fmqλ3〈r〉
m2
h1
m2
h2

ūq(p
′)uq(p)ū(k′)u(k). (838)

This leads to the identification of the effective coupling

2Gq√
2

=
mqfλ3〈r〉
m2
h1
m2
h2

⇒ Gq

mq

=

√
2fλ3〈r〉

2 m2
h1
m2
h2

. (839)
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15 Appendix E - Obtaining RG equations

To establish the one-loop RG equations for the parameters of the scalar potential, we

first compute the one-loop effective potential and then impose its independence from the

renormalisation scale. To one-loop level, the scalar potential is given by V = V (0)+∆V (1),

where V (0) is the tree-level potential and ∆V (1) indicates the one-loop correction to it.

To compute the latter it is useful to re-write the tree-level potential (479) in terms of the

real scalar fields:

Φ =
1√
2

 ϕ1 + iϕ2

ϕ3 + iϕ4

 and S =
1√
2

(κ1 + iκ2) . (840)

The particular combination of fields relevant for the calculation are ϕ2 = ϕ2
1 +ϕ2

2 +ϕ2
3 +ϕ2

4

and κ2 = κ2
1 + κ2

2 ; hence (479) can be rewritten as

V (0)(ϕ, r) =
1

2
µ2

1ϕ
2 +

1

2
µ2

2κ2 +
1

4
λ1ϕ

4 +
1

4
λ2κ4 +

1

4
λ3ϕ

2κ2 . (841)

In the Landau gauge the one-loop correction to the tree-level potential (841) reads:

∆V (1)(ϕ,κ) =
1

64π2

∑
i

(−1)2si(2si + 1)M4
i (ϕ2,κ2)

[
ln
M2

i (ϕ2,κ2)

Q2
− ci

]
, (842)

where ci are constants that depend on the renormalisation scheme. For the MS scheme,

we have ci = 5/6 for vectors, and ci = 3/2 for scalars and fermions. Next, we expand

(842) and we just keep the contributions from the scalar fields, the top-quark, the gauge

bosons, and the Majorana fermions,

∆V (1) =
1

64π2

{
G2

1

[
ln
G1

Q2
− 3

2

]
+ G2

2

[
ln
G2

Q2
− 3

2

]}
+

1

64π2

{
Tr

(
H2

[
ln
H
Q2
− 3

2

])
− 12 T 2

ϕ

[
ln
Tϕ
Q2
− 3

2

]}
+

1

64π2

{
3Tr

(
M2

ϕ

[
ln
Mϕ

Q2
− 5

6

])
− 4W 2

κ

[
ln
Wκ

Q2
− 3

2

]} (843)
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where (in a self-explanatory notation) the field-dependent squared masses are,

G1(ϕ,κ) = µ2
1 + λ1ϕ

2 +
λ3

2
κ2 , (844)

G2(ϕ,κ) = µ2
2 + λ2κ2 +

λ3

2
ϕ2 , (845)

H(ϕ,κ) =

 µ2
1 + 3λ1ϕ

2 + λ3
2
κ2 λ3ϕκ

λ3ϕκ µ2
2 + 3λ2κ2 + λ3

2
ϕ2

 , (846)

Tϕ(ϕ) =
1

2
(Ytϕ)2 , (847)

Mϕ(ϕ) =
1

4

 g 2
Y ϕ

2 −g2gY ϕ
2

−g2gY ϕ
2 g2

2ϕ
2

 , (848)

Wκ(κ) =
1

4
(fκ)2 . (849)

We define the beta functions βi (i = 1 . . . 3) for the quartic couplings, the gamma functions

γµ1,µ2 for the scalar masses, and the scalar anomalous dimensions γϕ,κ according to:

dλi/dt = βi, dµ
2
1/dt = γµ1µ

2
1, dµ2

2/dt = γµ2µ
2
2, dϕ2/dt = 2γϕϕ

2, and dκ2/dt = 2γκκ2. We

then extract the RG equations for the parameters of the scalar potential by forcing the

first derivative of the effective potential with respect to the scale t to vanish

d

dt
V (1) ≡ d

dt
(V (0) + ∆V (1)) ≡ 0 , (850)

keeping only the one-loop terms. After a bit of algebra (850) leads to the following

equations:
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µ2
1ϕ

2

2

[
γµ1 + 2γϕ −

1

16π2

(
12λ1 + 2

µ2
2

µ2
1

λ3

)]
= 0 ,

µ2
2κ2

2

[
γµ2 + 2γκ −

1

16π2

(
8λ2 + 4

µ2
1

µ2
2

λ3

)]
= 0 ,

ϕ4

4

[
β1 + 4λ1γϕ −

1

16π2

(
24λ2

1 + λ2
3 − 6Y 4

t +
9

8
g4

2 +
3

8
g4
Y +

3

4
g2

2g
2
Y

)]
= 0 , (851)

κ4

4

[
β2 + 4λ2γκ −

1

8π2

(
10λ2

2 + λ2
3 −

1

4
f 4

)]
= 0 ,

ϕ2κ2

4

[
β3 + 2λ3(γϕ + γκ)− 1

8π2

(
6λ1λ3 + 4λ2λ3 + 2λ2

3

)]
= 0 .

Requiring that each term between squared brackets vanishes, we arrive at the RG equa-

tions for the parameters of the scalar potential. Namely, substituting the explicit expres-

sion of the scalar anomalous dimensions [138]

γϕ = − 1

16π2

(
3Y 2

t −
9

4
g2

2 −
3

4
g2
Y

)
and γκ = − 1

8π2
f 2 , (852)

into (851) we obtain (522).
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16 Appendix F - Stability

To explore the impact of the complex singlet scalar on the stability of the Higgs sector

we follow [156] and consider a tree level scalar potential of the form

V (Φ, S) = λ1

(
Φ†Φ− 〈φ〉

2

2

)2

+ λ2

(
S†S − 〈r〉

2

2

)2

+ λ3

(
Φ†Φ− 〈φ〉

2

2

)(
S†S − 〈r〉

2

2

)
.

(853)

For λ3 > 0, the third term can only be negative when either one of the factors is negative.

The parameter space for Φ†Φ < 〈φ〉2/2 is, in principle, described by the effective potential

of the SM (with one Higgs). So herein we only consider S†S < 〈r〉2/2. As argued in [156],

the most dangerous region of the field configuration is given by S = 0.11 In this region,

we have

V (Φ, 0) = λ1(Q)

(
|Φ|2 − 〈φ〉

2

2

)2

+ λ2(Q)

(
〈r〉2

2

)2

− 〈r〉
2

2
λ3(Q)

(
|Φ|2 − 〈φ〉

2

2

)
. (854)

The couplings are now replaced by their values at some scale Q. We take 〈φ〉 and 〈r〉 to be

the physical VEV and only the couplings λi run. This is possible in some renormalization

scheme (like taking vacuum expectation |Φ| = 〈φ〉, |S| = 〈r〉 as one of the renormalization

conditions, which is satisfied trivially for this particular form of potential). Keeping only

terms with 〈r〉 (since 〈r〉 � 〈φ〉), the condition V = 0 can be rewritten as,

λ1(Q) | Φ |4 +
λ2(Q)〈r〉4

4
− λ3(Q)〈r〉2

2
|Φ|2 = 0. (855)

Next, we assume that λ2(Q)〈r〉2 ∼ −µ2(Q)2 is almost unchanged under the RG flow and

remains 1
2
m2
h2

(i.e. we assume that λi does not run by much). Under this assumption

(855) becomes

11The instability region is defined by both relations Q− < Φ < Q+ and λ1λ2 < (2λ3)−2, with the
couplings evaluated at the scale Φ. The second relation is more likely to be satisfied at a high energy scale,
and therefore |Φ| = Q+ is the most dangerous region of the field configuration to reach the instability
region, i.e. V (Φ, S) = 0.
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λ1(Q)|Φ|4 −
λ3(Q)m2

h2

4λ2(Q)
|Φ|2 +

m4
h2

16λ2(Q)
= 0. (856)

The solution to this equation gives Eq. (535); the first condition comes from |S|2 <

〈r〉2/2 ∼ 1
2
m2
h2

, with 〈φ〉 =
√

2|Φ| [156].

For λ3 < 0, we can consider a field configuration with both |Φ| ∼ Q, |S| ∼ Q much

larger than 〈r〉. The point is that we only need to find a configuration in which the

stability is violated. In this case, we must keep only the quartic term and the potential

becomes

V (Φ, S) = λ1|Φ|4 + λ2|S|4 + λ3 |Φ|2 |S|2 . (857)

On the one hand, following [156] we can duplicate the procedure to obtain (537). These

conditions can be satisfied and therefore the vacuum becomes unstable. On the other

hand, we can just consider the eigenvalues of the matrix

 λ1
1
2
λ3

1
2
λ3 λ2

 . (858)

In fact, the second approach also tells us why in the case of λ3 > 0, a potential with the

form of (857) is in fact stable. The eigenvector with the negative eigenvalue is given by

(
−−λ1 + λ2 +

√
λ2

1 − 2λ1λ2 + λ2
2 + λ2

3

λ3

, 1

)

When λ2
3 ≥ 4λ1λ2, the first component is negative. So it requires either |Φ|2 or |S|2 to

be negative, which is impossible. As a result, for λ3 > 0 we need to consider a particular

field configuration to study the instability.

We now relate the two functional forms of the Higgs potential. At the classical level

(479) differs from (853) by a constant; that is the vacuum energy is shifted. In fact (479)

has a negative vacuum energy ∼ −1
4
λ2(〈r〉) 〈r〉4 (again neglecting all 〈φ〉 corrections) and

the instability requires the potential to be smaller than this negative vacuum energy.

At a particular scale Q, all the couplings λi in (479) can be replaced by λi(Q) and
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µ1,2(Q), so that (479) can be rewritten in the form of (853) with some 〈φ(Q)〉, 〈r(Q)〉 as

a combination of λi(Q) and µi(Q). Note that we can still adopt our previous arguments

to consider only the configuration |S| = 0. In this case,

V (Φ, 0) = µ2
1(Q) |Φ|2 + λ1(Q) |Φ|4 (859)

The condition for stability is saturated when

µ2
1(Q) |Φ|2 + λ1(Q) |Φ|4 +

1

4
λ2(〈r〉) 〈r〉4 = 0 . (860)

Solving (485) we have −µ2
1(〈r〉) = 1

2
λ3(〈r〉) 〈r〉2. Now, assuming that all the λi do not

run too much along the RG flow we obtain (856).

When λ1,2 remains relative away from zero, (535) remains a reasonable approximation

for the scale Q± between which (i.e., Q− <
√

2|Φ| < Q+) the potential can become

negative. Note that a näıve argument for instability using only the quartic potential

(which is usually how we get to λ2
3 ≥ 4λ1λ2) is only valid for λ3 < 0. As a result, the

potential can only become unstable in a some very particular field configuration. In this

region, however, the effective potential is not valid since the field values are far away from

the scale Q.
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